In this paper,we demonstrate a method of designing all-dielectric metamaterial frequency selective surface(FSS)with ceramic resonators in spatial arrangement.Compared with the traditional way,spatial arrangement provi...In this paper,we demonstrate a method of designing all-dielectric metamaterial frequency selective surface(FSS)with ceramic resonators in spatial arrangement.Compared with the traditional way,spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators.With this method,the resonance response can be adjusted easily to achieve pass/stop band effects.As an example,a stop band spatial arrangement all-dielectric metamaterial FSS is designed.Its working band is in 11.65–12.23 GHz.By adjusting permittivity and geometrical parameters of ceramic resonators,we can easily modulate the resonances,band pass or band stop characteristic,as well as the working band.展开更多
A kind of circular ring high frequency wideband underwater acoustic transducer is developed by using the Low Q value and broadband characteristics of the piezoelectricity composite material,and the dual mode coupling ...A kind of circular ring high frequency wideband underwater acoustic transducer is developed by using the Low Q value and broadband characteristics of the piezoelectricity composite material,and the dual mode coupling is used to broaden the bandwidth of the transducer by double ring stacking along the axial direction.Through theoretical analysis and simulation calculation,the geometric dimensions of the sensitive components are determined.The piezoelectric composite rings are processed and then the stack sensitive element can be made by stacking two piezoelectric composite rings with the same outer diameter and different thickness in axial direction by cutting piezoelectric ceramicsfilling the flexible polymer-coating electrode.Finally,the transducer can be made by pouring waterproof sound-permeable layer.The performances of transducer have also been tested in the water and the test results show that the resonant frequency is 410 kHz,the maximum transmit voltage response is 150 dB,the-3 dB bandwidth can reaches 60 kHz,the horizontal directivity(-5 dB) is 360°,and the vertical directivity(-3 dB) is 20°.It is also shown that the bandwidth of the transducer can be enlarged remarkably by using the method of stacking two different thickness piezoelectric composite rings along the axial direction,and the horizontal omnidirectional emission of acoustic wave can be realized展开更多
基金Natural Science Foundation of China(NSFC)through the grant nos.11504428,61671466 and 11274389Natural Science Foundation of Shaanxi Province under Grant 2016JM6026.
文摘In this paper,we demonstrate a method of designing all-dielectric metamaterial frequency selective surface(FSS)with ceramic resonators in spatial arrangement.Compared with the traditional way,spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators.With this method,the resonance response can be adjusted easily to achieve pass/stop band effects.As an example,a stop band spatial arrangement all-dielectric metamaterial FSS is designed.Its working band is in 11.65–12.23 GHz.By adjusting permittivity and geometrical parameters of ceramic resonators,we can easily modulate the resonances,band pass or band stop characteristic,as well as the working band.
基金supported by the National Natural Science Foundation of China(614710470)
文摘A kind of circular ring high frequency wideband underwater acoustic transducer is developed by using the Low Q value and broadband characteristics of the piezoelectricity composite material,and the dual mode coupling is used to broaden the bandwidth of the transducer by double ring stacking along the axial direction.Through theoretical analysis and simulation calculation,the geometric dimensions of the sensitive components are determined.The piezoelectric composite rings are processed and then the stack sensitive element can be made by stacking two piezoelectric composite rings with the same outer diameter and different thickness in axial direction by cutting piezoelectric ceramicsfilling the flexible polymer-coating electrode.Finally,the transducer can be made by pouring waterproof sound-permeable layer.The performances of transducer have also been tested in the water and the test results show that the resonant frequency is 410 kHz,the maximum transmit voltage response is 150 dB,the-3 dB bandwidth can reaches 60 kHz,the horizontal directivity(-5 dB) is 360°,and the vertical directivity(-3 dB) is 20°.It is also shown that the bandwidth of the transducer can be enlarged remarkably by using the method of stacking two different thickness piezoelectric composite rings along the axial direction,and the horizontal omnidirectional emission of acoustic wave can be realized