期刊文献+
共找到399篇文章
< 1 2 20 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
2
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Cav3.2 channel regulates cerebral ischemia/reperfusion injury:a promising target for intervention
3
作者 Feibiao Dai Chengyun Hu +7 位作者 Xue Li Zhetao Zhang Hongtao Wang Wanjun Zhou Jiawu Wang Qingtian Geng Yongfei Dong Chaoliang Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2480-2487,共8页
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ... Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury. 展开更多
关键词 CALCINEURIN Cav3.2 channel cerebral ischemia/reperfusion hippocampus HYPOXIA/REOXYGENATION inflammatory response nuclear factor of activated T cells 3 oxidative stress primary hippocampal neurons stroke
下载PDF
Lactiplantibacillus plantarum AR113 alleviates microbiota dysbiosis of tongue coating and cerebral ischemia/reperfusion injury in rat
4
作者 Zhiqiang Xiong Gang Liu +5 位作者 Ling Fang Xiuming Li Yongjun Xia Guangqiang Wang Xin Song Lianzhong Ai 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2132-2140,共9页
Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and r... Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and rehabilitation is unknown.Here,TCM from stroke patients(SP)was characterized using molecular techniques.The occurrence of stroke resulted in TCM dysbiosis with significantly reduced species richness and diversity.The abundance of Prevotella,Leptotrichia,Actinomyces,Alloprevotella,Haemophilus,and TM7_[G-1]were greatly reduced,but common infection Streptococcus and Pseudomonas were remarkably increased.Furthermore,an antioxidative probiotic Lactiplantibacillus plantarum AR113 was used for TCM intervention in stroke rats with cerebral ischemia/reperfusion(I/R).AR113 partly restored I/R induced change of TCM and gut microbiota with significantly improved neurological deficit,relieved histopathologic change,increased activities of antioxidant enzymes,and decreased contents of oxidative stress biomarkers.Moreover,the gene expression of antioxidant-related proteins and apoptosis-related factors heme oxygenase-1(HO-1),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),nuclear factor erythroid 2-related factor 2(Nrf2),NAD(P)H:quinone oxidoreductase-1(NQO-1),and Bcl-2 was significantly increased,but cytochrome C,cleaved caspase-3,and Bax were markedly decreased in the brain by AR113 treatment.The results suggested that AR113 could ameliorate cerebral I/R injury through antioxidation and anti-apoptosis pathways,and AR113 intervention of TCM may have the application potential for stroke prevention and control. 展开更多
关键词 Stroke cerebral ischemia/reperfusion Tongue coating Lactiplantibacillus plantarum AR113 Probiotic intervention
下载PDF
Vav1 promotes inflammation and neuronal apoptosis in cerebral ischemia/reperfusion injury by upregulating microglial and NLRP3 inflammasome activation 被引量:1
5
作者 Jing Qiu Jun Guo +3 位作者 Liang Liu Xin Liu Xianhui Sun Huisheng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2436-2442,共7页
Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a gua... Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a guanine nucleotide exchange factor that is related to microglial activation.However,how Vav1 participates in the inflammato ry response after cerebral ischemia/reperfusion inj ury remains unclea r.In this study,we subjected rats to occlusion and repe rfusion of the middle cerebral artery and subjected the BV-2 mic roglia cell line to oxygen-glucose deprivatio n/reoxygenation to mimic cerebral ischemia/repe rfusion in vivo and in vitro,respectively.We found that Vav1 levels were increased in the brain tissue of rats subjected to occlusion and reperfusion of the middle cerebral arte ry and in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation.Silencing Vav1 reduced the cerebral infarct volume and brain water content,inhibited neuronal loss and apoptosis in the ischemic penumbra,and im p roved neurological function in rats subjected to occlusion and repe rfusion of the middle cerebral artery.Further analysis showed that Vav1 was almost exclusively localized to microglia and that Vav1 downregulation inhibited microglial activation and the NOD-like receptor pyrin 3(NLRP3) inflammasome in the ischemic penumbra,as well as the expression of inflammato ry facto rs.In addition,Vov1 knoc kdown decreased the inflammatory response exhibited by BV-2 cells after oxygen-glucose deprivation/reoxyge nation.Taken together,these findings show that silencing Vav1 attenuates inflammation and neuronal apoptosis in rats subjected to cerebral ischemia/repe rfusion through inhibiting the activation of mic roglia and NLRP3 inflammasome. 展开更多
关键词 apoptosis cerebral ischemia/reperfusion inflammatory cytokines microglia microglial activation middle cerebral artery occlusion neuroprotection NLRP3 inflammasome oxygen-glucose deprivation/reoxygenation Vav1
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:1
6
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion
7
作者 Lin-Yan Huang Ju-Yun Ma +9 位作者 Jin-Xiu Song Jing-Jing Xu Rui Hong Hai-Di Fan Heng Cai Wan Wang Yan-Ling Wang Zhao-Li Hu Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1040-1045,共6页
Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In t... Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue(cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury. 展开更多
关键词 CDC42 cerebral ischemia/reperfusion injury GPR91 neural stem cells neurogenesis PROLIFERATION SIRT5 SUCCINATE SUCCINYLATION
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
8
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Whole-brain CT Perfusion at Admission and During Delayed Time-window Detects the Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage
9
作者 Feng YOU Wen-juan TANG +3 位作者 Chao ZHANG Ming-quan YE Xing-gen FANG Yun-feng ZHOU 《Current Medical Science》 SCIE CAS 2023年第2期409-416,共8页
Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP p... Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP parameters from admission to DCITW following aneurysmal subarachnoid hemorrhage.Methods Eighty patients underwent CTP at admission and during DCITW.The mean and extreme values of all CTP parameters at admission and during DCITW were compared between the DCI group and non-DCI group,and comparisons were also made between admission and DCITW within each group.The qualitative color-coded perfusion maps were recorded.Finally,the relationship between CTP parameters and DCI was assessed by receiver operating characteristic(ROC)analyses.Results With the exception of cerebral blood volume(P=0.295,admission;P=0.682,DCITW),there were significant differences in the mean quantitative CTP parameters between DCI and non-DCI patients both at admission and during DCITW.In the DCI group,the extreme parameters were significantly different between admission and DCITW.The DCI group also showed a deteriorative trend in the qualitative color-coded perfusion maps.For the detection of DCI,mean transit time to the center of the impulse response function(Tmax)at admission and mean time to start(TTS)during DCITW had the largest area under curve(AUC),0.698 and 0.789,respectively.Conclusion Whole-brain CTP can predict the occurrence of DCI at admission and diagnose DCI during DCITW.The extreme quantitative parameters and qualitative color-coded perfusion maps can better reflect the perfusion changes of patients with DCI from admission to DCITW. 展开更多
关键词 aneurysmal subarachnoid hemorrhage delayed cerebral ischemia ADMISSION time window computed tomography perfusion
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury
10
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
Autophagy: a double-edged sword for neuronal survival after cerebral ischemia 被引量:57
11
作者 Wenqi Chen Yinyi Sun +1 位作者 Kangyong Liu Xiaojiang Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1210-1216,共7页
Evidence suggests that autophagy may be a new therapeutic target for stroke, but whether acti- vation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the po... Evidence suggests that autophagy may be a new therapeutic target for stroke, but whether acti- vation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the potential role and possible signaling pathway of autophagy in neuronal survival after cerebral ischemia and proposes that autophagy has dual effects. 展开更多
关键词 nerve regeneration AUTOPHAGY LYSOSOME AUTOPHAGOSOME neuron cerebral ischemia signaling pathway apoptosis necrosis survival NSFC grant neural regeneration
下载PDF
Ligustrazine monomer against cerebral ischemia/reperfusion injury 被引量:49
12
作者 Hai-jun Gao Peng-fei Liu +7 位作者 Pei-wen Li Zhuo-yan Huang Feng-bo Yu Ting Lei Yong Chen Ye Cheng Qing-chun Mu Hai-yan Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期832-840,共9页
Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustraz... Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine. 展开更多
关键词 nerve regeneration LIGUSTRAZINE ischemia cerebral ischemia/reperfusion injury neuralregeneration
下载PDF
Neuroprotective effects of Buyang Huanwu decoction on cerebral ischemia-induced neuronal damage 被引量:32
13
作者 Qingchun Mu Pengfei Liu +3 位作者 Xitong Hu Haijun Gao Xu Zheng Haiyan Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第17期1621-1627,共7页
Among the various treatment methods for stroke, increasing attention has been paid to tradi- tional Chinese medicines. Buyang Huanwu decoction is a commonly used traditional Chinese medicine for the treatment of strok... Among the various treatment methods for stroke, increasing attention has been paid to tradi- tional Chinese medicines. Buyang Huanwu decoction is a commonly used traditional Chinese medicine for the treatment of stroke. This paper summarizes the active components of the Chinese herb, which is composed of Huangqi (Radix Astragali seu Hedysari), Danggui (Radix Angelica sinensis), Chishao (Radix Paeoniae Rubra), Chuanxiong (Rhizoma Ligustici Chuanx- iong), Honghua (Flos Carthami), Taoren (Semen Persicae) and Dilong (Pheretima), and identifies the therapeutic targets and underlying mechanisms that contribute to the neuroprotective prop- erties of Buyang Huanwu decoction. 展开更多
关键词 nerve regeneration Buyang Huanwu decoction traditional Chinese medicine cerebral ischemia clinical application NEUROPROTECTION REVIEW neural regeneration
下载PDF
Atorvastatin protects against cerebral ischemia/ reperfusion injury through anti-inflammatory and antioxidant effects 被引量:29
14
作者 Qiuyun Tu Hui Cao +2 位作者 Wei Zhong Binrong Ding Xiangqi Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期268-275,共8页
In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion in... In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/ reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulated, the oxidative stress-related marker malondialdehyde was increased, and super- oxide dismutase activity was decreased in the ischemic cerebral cortex. Atorvastatin pretreatment significantly inhibited these changes. Our findings indicate that atorvastatin protects against ce-rebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects. 展开更多
关键词 nerve regeneration brain injury cerebral ischemia/reperfusion ATORVASTATIN E-SELECTIN MYELOPEROXIDASE superoxide dismutase MALONDIALDEHYDE inflammation free radicals blood-brainbarrier stroke NSFC grant neural regeneration
下载PDF
Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus 被引量:26
15
作者 Jingli Liu Jinpin Li +3 位作者 Yi Yang Xiaoling Wang Zhaoxia Zhang Lei Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第7期727-734,共8页
Previous studies have indicated that electrical stimulation of the cerebellar fastigial nucleus in rats may reduce brain infarct size, increase the expression of Ku70 in cerebral ischemia/ reperfusion area, and decrea... Previous studies have indicated that electrical stimulation of the cerebellar fastigial nucleus in rats may reduce brain infarct size, increase the expression of Ku70 in cerebral ischemia/ reperfusion area, and decrease the number of apoptotic neurons. However, the anti-apoptotic mechanism of Ku70 remains unclear. In this study, fastigial nucleus stimulation was given to rats 24, 48, and 72 hours before cerebral ischemia/reperfusion injury. Results from the electrical stim- ulation group revealed that rats exhibited a reduction in brain infarct size, a significant increase in the expression of KuT0 in cerebral ischemia/reperfusion regions, and a decreased number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Double immunofluorescence staining revealed no co-localization of Ku70 with TUNEL-positive cells. However, Ku70 partly co-localized with Bax protein in the cytoplasm of rats with cerebral ischemia/reperfusion injury. These findings suggest an involvement of Ku70 with Bax in the cy- toplasm of rats exposed to electrical stimulation of the cerebellar fastigial nucleus, and may thus provide an understanding into the anti-apoptotic activity of KuT0 in cerebral ischemia/reperfu- sion injury. 展开更多
关键词 nerve regeneration brain injury apoptosis KU70 Bax electrical stimulation fastigialnucleus cerebral ischemia/reperfusion injury DNA repair NSFC grant neural regeneration
下载PDF
Inhibition of Excitatory Amino Acid Efflux Contributes to Protective Effects of Puerarin Against Cerebral Ischemia in Rats 被引量:30
16
作者 XIAO-HONG XU XIAO-XIANG ZHENG +1 位作者 QIONG ZHOU HUI LI 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2007年第4期336-342,共7页
To investigate whether the protective effects of puerarine (Pur) against cerebral ischemia is associated with depressing the extracellular levels of amino acid transmitters in brain of rats. Methods Male Sprague-Daw... To investigate whether the protective effects of puerarine (Pur) against cerebral ischemia is associated with depressing the extracellular levels of amino acid transmitters in brain of rats. Methods Male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) for 60 min followed by 24 h reperfusion. Put (50, 100 mg/kg, i.p.) was administered at the onset of MCAO. The infarct rate and edema rate were detected on TTC (2,3,5-triphenyltetrazolium chloride)-stained coronal sections. The extracellular levels of amino acid transmitters were monitored in striatum of rats with ischemic/reperfusion injury using in vivo microdialysis technique. Furthermore, the protective effects of Pur against glutamate-induced neurotoxicity were detected. Glutamate-induced apoptotic and necrotic cells in hippocampus were estimated by flow cytometric analysis of Annexin-V and PI labeling cells. Results Pur (100 mg/kg) significantly decreased infarct size by 31.6% (P〈0.05), reduced edema volume (P〈0.05), and improved neurological functions (P〈0.05) following MCAO. In these rats, the ischemia-induced extracellular levels of aspartate (Asp), glutamate (Glu), γ-aminobutyric acid (GABA), and taurine (Tau) were significantly reduced in striatum of vehicle-treated animals by 54.7%, 56.7%, 75.8%, and 68.1% (P〈0.01 and P〈0.05). Pur reduced the peak values of Glu and Asp more obviously than those of GABA and Tau, and the rate of Glu/GABA during MCAO markedly decreased in Pur-treated MCAO rats, compared with the vehicle-treated MCAO rats. Meanwhile, apoptosis and necrosis induced by Glu in cultured hippocampal neurons were significantly reduced after Pur treatment. Conclusion Acute treatment with Put at the onset of occlusion significantly depresses ischemia-induced efflux of amino acids, especially, excitotoxicity in the striatum, a mechanism underlying the neuroprotective effect on cellular survival. 展开更多
关键词 cerebral ischemia PUERARIN MICRODIALYSIS Amino acid transmitter NEUROPROTECTION
下载PDF
Cerebral ischemia and neuroregeneration 被引量:31
17
作者 Reggie H.C.Lee Michelle H.H.Lee +5 位作者 Celeste Y.C.Wu Alexandre Couto e Silva Harlee E.Possoit Tsung-Han Hsieh Alireza Minagar Hung Wen Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期373-385,共13页
Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for trea... Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies again st stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia. 展开更多
关键词 cerebral ischemia MELATONIN RESVERATROL protein kinase C pifithrin-α fatty acids sympathetic nervous system neuromodulation therapy traditional Chinese therapies stem cel
下载PDF
Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway 被引量:39
18
作者 Xiaojie Liu Zhigang Mei +2 位作者 Jingping Qian Yongbao Zeng Mingzhi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3203-3215,共13页
Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats.... Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that anti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic anti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be involved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re- duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-a in brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-KB) inhibition. These observa- tions were inhibited by the alpha7 nicotinic acetylcholine receptor (a7nAchR) antagonist a-bungarotoxin (a-BGT). In addition, puerarin pretreatment increased the expression of a7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re- sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be medi- ated through the activation of the cholinergic anti-inflammatory pathway. 展开更多
关键词 neural regeneration cerebral ischemia/reperfusion inflammation cholinergic anti-inflammatory pathway alpha7 nicotinicacetylcholine receptors nuclear factor kappa B janus-activated kinase 2 signal transducers and activators of transcription 3 grants-supported paper NEUROREGENERATION
下载PDF
A feasible strategy for focal cerebral ischemiareperfusion injury: remote ischemic postconditioning 被引量:21
19
作者 Qiang Liu Shengnian Zhou +3 位作者 Yaodong Wang Fang Qi Yuan Song Siwei Long 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第15期1460-1463,共4页
It is difficult to control the degree of ischemic postconditioning in the brain and other isch- emia-sensitive organs. Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on ... It is difficult to control the degree of ischemic postconditioning in the brain and other isch- emia-sensitive organs. Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on terminal organs. In this study, a focal cerebral ischemia-reperftlsion injury model was established using three cycles of remote ischernic postconditioning, each cycle consisted of 10-minute occlusion of the femoral artery and 10-minute opening. The results showed that, remote ischemic postconditioning significantly decreased the percentage of the in- farct area and attenuated brain edema. In addition, inflammatory nuclear factor-KB expression was significantly lower, while anti-apoptotic Bcl-2 expression was significantly elevated in the ce- rebral cortex on the ischemic side. Our findings indicate that remote ischemic postconditioning attenuates focal cerebral ischemia/reperfusion injury, and that the neuroprotective mechanism is mediated by an anti-apoptotic effect and reduction of the inflammatory response. 展开更多
关键词 nerve regeneration remote ischemic postconditioning focal cerebral ischemia neuropro-tection APOPTOSIS INFLAMMATION brain injury nuclear factor-~B BCL-2 neural regeneration
下载PDF
Puerarin protects brain tissue against cerebral ischemia/reperfusion injury by inhibiting the inflammatory response 被引量:27
20
作者 Feng Zhou Liang Wang +4 位作者 Panpan Liu Weiwei Hu Xiangdong Zhu Hong Shen Yuanyuan Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2074-2080,共7页
Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ische... Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ischemia/reperfusion injury using the suture method. Puerarin (100 mg/kg) was administered intraperitoneally 30 minutes before middle cerebral artery occlusion and 8 hours after reperfusion. Twenty-four hours after reperfusion, we found that puerarin significantly improved neurological deficit, reduced infarct size and brain water content, and notably diminished the expression of Toll-like receptor-4, myeloid differentiation factor 88, nuclear factor kappa B and tumor necrosis factor-α in the ischemic region. These data indicate that puerarin exerts an anti-inflammatory protective effect on brain tissue with ischemia/reperfusion damage by downregulating the expression of multiple inflammatory factors. 展开更多
关键词 nerve regeneration brain injury PUERARIN cerebral ischemia reperfusion injury rats inflammatory reaction Toll-like receptor-4 nuclear factor kappa B myeloid differentiation factor 88 tumor necrosis factor-α middle cerebral artery occlusion neural regeneration
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部