The thermodynamics and the properties of the cerium carbide Fe4 Ce4 C7 in steel have been studied by means of metallography, electron microprobe, X-ray diffraction technique and electrolytic separation. The main resul...The thermodynamics and the properties of the cerium carbide Fe4 Ce4 C7 in steel have been studied by means of metallography, electron microprobe, X-ray diffraction technique and electrolytic separation. The main results obtained can be summarized as follows: The cerium carbide CeC2 can be precipitated in cast steel and distributed along the grain boundaries. Heat treating the steel as austenite, the CeC2 transformed into ternary compound Fe4Ce4 C7, its thermodynamics of formation in steel being expressed as: ac exp(6400/T-6. 28), where 1015K<T<1523K and ac 0.126. Fe4Ce4C7 in steel is primitive tetragonal, anisotmpic in polarized light, opaque in dark field and a little greyer than iron matrix in bright field. Its Vickers hardness is about 420kg/mm2 (annealed) and 750kg/mm2 (quenched). This phase in steel is stable in basic and organic solutions and can be seperated from the matrix by electrolysis. Moreover, the LaC2 in steel can not be transformed into Fe-La-C ternary compound in present investigation.展开更多
s: The influences of cerium and cerium carbide on the strength, plasticity, impact toughness and other mechanical properties of steels were investigated by means of metallography, scanning electron microscopy, impact ...s: The influences of cerium and cerium carbide on the strength, plasticity, impact toughness and other mechanical properties of steels were investigated by means of metallography, scanning electron microscopy, impact test, tensile test and other experimental methods. The results show that cerium in solid solution of the steel matrix can inhibit the grain growth of austenite and enhance the temperature of grain coarsening by fifty degrees at least. An excess of cerium addition will segregate to grain boundaries, and considerably reduce the impact toughness of the steel. The cerium carbide can obviously improve the plasticity and toughness of steels, but does not noticeably affect the yield strength of steels.展开更多
The Mn-doped Ce02 nanopowders with high catalysis activity were successfully fabricated through a simple hydrolyzed-oxidized approach. Firstly, the alloy Ce37Mnl 8C45 was prepared in vacuum induction melting furnace. ...The Mn-doped Ce02 nanopowders with high catalysis activity were successfully fabricated through a simple hydrolyzed-oxidized approach. Firstly, the alloy Ce37Mnl 8C45 was prepared in vacuum induction melting furnace. Subsequently, Mn-doped CeO2 nanopowders with 142 m2/g of specific surface area were obtained through a simple hydrolyzed-oxidized procedure of the alloy Those nanopowders were heat treated at different temperatures. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS). And the catalytic activity on vinyl chloride (VC) emission combustion was investigated. The results showed that those nanopowders after hydrolyzed-oxidized from Ce37Mn18C45 mainly consisted of CeO2 and Mn304. Manganese element increased the thermal stability of CeO2 nanopowders. The Mn-doped CeO2 nanopowders had three morphologies. Small particles were Mn-doped CeO2, square particles were Mn304 and the rods were Mn304 and Mn203. The Mn-doped CeO2 nanopowders had good vinyl chloride (VC) emission catalytic performance.展开更多
文摘The thermodynamics and the properties of the cerium carbide Fe4 Ce4 C7 in steel have been studied by means of metallography, electron microprobe, X-ray diffraction technique and electrolytic separation. The main results obtained can be summarized as follows: The cerium carbide CeC2 can be precipitated in cast steel and distributed along the grain boundaries. Heat treating the steel as austenite, the CeC2 transformed into ternary compound Fe4Ce4 C7, its thermodynamics of formation in steel being expressed as: ac exp(6400/T-6. 28), where 1015K<T<1523K and ac 0.126. Fe4Ce4C7 in steel is primitive tetragonal, anisotmpic in polarized light, opaque in dark field and a little greyer than iron matrix in bright field. Its Vickers hardness is about 420kg/mm2 (annealed) and 750kg/mm2 (quenched). This phase in steel is stable in basic and organic solutions and can be seperated from the matrix by electrolysis. Moreover, the LaC2 in steel can not be transformed into Fe-La-C ternary compound in present investigation.
文摘s: The influences of cerium and cerium carbide on the strength, plasticity, impact toughness and other mechanical properties of steels were investigated by means of metallography, scanning electron microscopy, impact test, tensile test and other experimental methods. The results show that cerium in solid solution of the steel matrix can inhibit the grain growth of austenite and enhance the temperature of grain coarsening by fifty degrees at least. An excess of cerium addition will segregate to grain boundaries, and considerably reduce the impact toughness of the steel. The cerium carbide can obviously improve the plasticity and toughness of steels, but does not noticeably affect the yield strength of steels.
基金Project supported by Shanghai Leading Academic Discipline Project (S30107)
文摘The Mn-doped Ce02 nanopowders with high catalysis activity were successfully fabricated through a simple hydrolyzed-oxidized approach. Firstly, the alloy Ce37Mnl 8C45 was prepared in vacuum induction melting furnace. Subsequently, Mn-doped CeO2 nanopowders with 142 m2/g of specific surface area were obtained through a simple hydrolyzed-oxidized procedure of the alloy Those nanopowders were heat treated at different temperatures. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS). And the catalytic activity on vinyl chloride (VC) emission combustion was investigated. The results showed that those nanopowders after hydrolyzed-oxidized from Ce37Mn18C45 mainly consisted of CeO2 and Mn304. Manganese element increased the thermal stability of CeO2 nanopowders. The Mn-doped CeO2 nanopowders had three morphologies. Small particles were Mn-doped CeO2, square particles were Mn304 and the rods were Mn304 and Mn203. The Mn-doped CeO2 nanopowders had good vinyl chloride (VC) emission catalytic performance.