Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes ...Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes have been established on Identity-Based Cryptography (IBC) with key escrow problem inherently. Such problem severely restricts the promotion of IBC-based Public Key Infrastructure including PEKS component. Hence, Certificateless Public Key Cryptography (CLPKC) is efficient to remove such problem. CLPKC is introduced into PEKS, and a general model of Certificateless PEKS (CLPEKS) is formalized. In addition, a practical CLPEKS scheme is constructed with security and efficiency analyses. The proposal is secure channel free, and semantically secure against adaptive chosen keyword attack and keyword guessing attack. To illustrate the superiority, massive experiments are conducted on Enron Email dataset which is famous in information retrieval field. Compared with existed constructions, CLPEKS improves the efficiency in theory and removes the key escrow problem.展开更多
Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. M...Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. Many certificateless public key encryption and signature schemes have been proposed. However, the key agreement in CL-PKE is seldom discussed. In this paper, we present a new certificateless two party authentication key agreement protocol and prove its security attributes. Compared with the existing protocol, our protocol is more efficient.展开更多
Certificateless public key cryptography (CL-PKC) enjoys the advantage of identity based cryptography without suffering from its inherent key escrow problem. In this paper, a new efficient certificateless public key ...Certificateless public key cryptography (CL-PKC) enjoys the advantage of identity based cryptography without suffering from its inherent key escrow problem. In this paper, a new efficient certificateless public key encryption scheme is proposed and its security can reach chosen-ciphertext (CCA2) secure in the random oracle model assuming the CDH and p-BDHI problem are difficult. A comparison shows that the efficiency of the proposed scheme is better than all known paring-based certificateless public key encryption schemes in the random oracle model.展开更多
Threshold signature has been widely used in electronic wills,electronic elections,cloud computing,secure multiparty computation and other fields.Until now,certificateless threshold signature schemes are all based on t...Threshold signature has been widely used in electronic wills,electronic elections,cloud computing,secure multiparty computation and other fields.Until now,certificateless threshold signature schemes are all based on traditional mathematic theory,so they cannot resist quantum computing attacks.In view of this,we combine the advantages of lattice-based cryptosystem and certificateless cryptosystem to construct a certificateless threshold signature from lattice(LCLTS)that is efficient and resistant to quantum algorithm attacks.LCLTS has the threshold characteristics and can resist the quantum computing attacks,and the analysis shows that it is unforgeable against the adaptive Chosen-Message Attacks(UF-CMA)with the difficulty of Inhomogeneous Small Integer Solution(ISIS)problem.In addition,LCLTS solves the problems of the certificate management through key escrow.展开更多
Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in ...Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.展开更多
In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/ser...In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/server setting is proposed, which uses pairings on certain elliptic curves. We show that the newly proposed key agreement protocol is practical and of great efficiency, meanwhile, it satisfies every desired security require ments for key agreement protocols.展开更多
Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present ...Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present an efficient constant-round group key exchange protocol, which is provably secure under the intractability of computation Diffie-Hellman problem. Our protocol is a contributory key exchange with perfect forward secrecy and has only two communication rounds. So it is more efficient than other protocols. Moreover, our protocol provides a method to design efficient constant-round group key exchange protocols and most secret sharing schemes could be adopted to construct our protocol.展开更多
Self-Generated-Certificate Public Key Cryptography(SGC-PKC) ,is the enhanced version of Certificateless Public Key Cryptography(CL-PKC) . It preserves all advantages of CL-PKC. Similar to CL-PKC,every user is given a ...Self-Generated-Certificate Public Key Cryptography(SGC-PKC) ,is the enhanced version of Certificateless Public Key Cryptography(CL-PKC) . It preserves all advantages of CL-PKC. Similar to CL-PKC,every user is given a partial private key by the KGC and generates his own private key and corresponding public key. In addition,it can defend against the Denial-of-Decryption(DoD) Attack. In this paper,we propose a new approach to construction SGC-PKE scheme that derived from a new application of chameleon hash and give a concrete scheme. It is the first scheme which has flexible public key and reaches Girault's trusted level 3,the same level as is enjoyed in a traditional PKI.展开更多
Industrial internet of things (IIoT) is the usage of internet of things(IoT) devices and applications for the purpose of sensing, processing andcommunicating real-time events in the industrial system to reduce the unn...Industrial internet of things (IIoT) is the usage of internet of things(IoT) devices and applications for the purpose of sensing, processing andcommunicating real-time events in the industrial system to reduce the unnecessary operational cost and enhance manufacturing and other industrial-relatedprocesses to attain more profits. However, such IoT based smart industriesneed internet connectivity and interoperability which makes them susceptibleto numerous cyber-attacks due to the scarcity of computational resourcesof IoT devices and communication over insecure wireless channels. Therefore, this necessitates the design of an efficient security mechanism for IIoTenvironment. In this paper, we propose a hyperelliptic curve cryptography(HECC) based IIoT Certificateless Signcryption (IIoT-CS) scheme, with theaim of improving security while lowering computational and communicationoverhead in IIoT environment. HECC with 80-bit smaller key and parameterssizes offers similar security as elliptic curve cryptography (ECC) with 160-bitlong key and parameters sizes. We assessed the IIoT-CS scheme security byapplying formal and informal security evaluation techniques. We used Realor Random (RoR) model and the widely used automated validation of internet security protocols and applications (AVISPA) simulation tool for formalsecurity analysis and proved that the IIoT-CS scheme provides resistance tovarious attacks. Our proposed IIoT-CS scheme is relatively less expensivecompared to the current state-of-the-art in terms of computational cost andcommunication overhead. Furthermore, the IIoT-CS scheme is 31.25% and 51.31% more efficient in computational cost and communication overhead,respectively, compared to the most recent protocol.展开更多
Cloud Computing expands its usability to various fields that utilize data and store it in a common space that is required for computing and the purpose of analysis as like the IoT devices.These devices utilize the clo...Cloud Computing expands its usability to various fields that utilize data and store it in a common space that is required for computing and the purpose of analysis as like the IoT devices.These devices utilize the cloud for storing and retrieving data since the devices are not capable of storing processing data on its own.Cloud Computing provides various services to the users like the IaaS,PaaS and SaaS.The major drawback that is faced by cloud computing include the Utilization of Cloud services for the storage of data that could be accessed by all the users related to cloud.The use of Public Key Encryptions with keyword search(PEKS)provides security against the untrustworthy third-party search capability on publicly encryption keys without revealing the data’s contents.But the Security concerns of PEKs arise when Inside Keywords Guessing attacks(IKGA),is identified in the system due to the untrusted server presume the keyword in trapdoor.This issue could be solved by using various algorithms like the Certificateless Hashed Public Key Authenticated Encryption with Keyword Search(CL-HPAEKS)which utilizes the Modified Elliptic Curve Cryptography(MECC)along with the Mutation Centred flower pollinations algorithm(CM-FPA)that is used in enhancing the performance of the algorithm using the Optimization in keys.The additional use of Message Digests 5(MD5)hash function in the system enhances the security Level that is associated with the system.The system that is proposed achieves the security level performance of 96 percent and the effort consumed by the algorithm is less compared to the other encryption techniques.展开更多
The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the au...The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.展开更多
As an improtant cryptographic scheme, signcryption scheme has been widely used in applications since it could provide both of signature and encryption. With the development of the certificateless public key cryptograp...As an improtant cryptographic scheme, signcryption scheme has been widely used in applications since it could provide both of signature and encryption. With the development of the certificateless public key cryptography (CLPKC), many certificatelss signcryption (CLSC) schemes using bilinear pairing hve been proposed. Comparated other operations, the bilinear pairing operaion is much more compulicated. Therefore, CLSC scheme without bilinear pairing is more suitable for applications. Recently, Jing et al. proposed a CLSC scheme without bilinear pairing and claimed their scheme is secure against two types of adversaries. In this paper, we will show their scheme provide neither unforgeability property nor confidentiality property. To improve security, we also propose a new CLSC scheme without pairing and demonstrate it is provably secure in the random oracle model.展开更多
Certificateless public key cryptography elimi- nates inherent key escrow problem in identity-based cryptog- raphy, and does not yet requires certificates as in the tradi- tional public key infrastructure. In this pape...Certificateless public key cryptography elimi- nates inherent key escrow problem in identity-based cryptog- raphy, and does not yet requires certificates as in the tradi- tional public key infrastructure. In this paper, we give crypt- analysis to Hwang et al.'s certificateless encryption scheme which is the first concrete certificateless encryption scheme that can be proved to be secure against "malicious-but- passive" key generation center (KGC) attack in the stan- dard model. Their scheme is proved to be insecure even in a weaker security model called "honest-but-curious" KGC at- tack model. We then propose an improved scheme which is really secure against "malicious-but-passive" KGC attack in the standard model.展开更多
基金This research was supported by the National Science Foundation of China for Funding Projects (61173089,61472298) and National Statistical Science Program of China(2013LZ46).
文摘Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes have been established on Identity-Based Cryptography (IBC) with key escrow problem inherently. Such problem severely restricts the promotion of IBC-based Public Key Infrastructure including PEKS component. Hence, Certificateless Public Key Cryptography (CLPKC) is efficient to remove such problem. CLPKC is introduced into PEKS, and a general model of Certificateless PEKS (CLPEKS) is formalized. In addition, a practical CLPEKS scheme is constructed with security and efficiency analyses. The proposal is secure channel free, and semantically secure against adaptive chosen keyword attack and keyword guessing attack. To illustrate the superiority, massive experiments are conducted on Enron Email dataset which is famous in information retrieval field. Compared with existed constructions, CLPEKS improves the efficiency in theory and removes the key escrow problem.
基金Supported by the National Natural Science Foundation of China (19501032)
文摘Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. Many certificateless public key encryption and signature schemes have been proposed. However, the key agreement in CL-PKE is seldom discussed. In this paper, we present a new certificateless two party authentication key agreement protocol and prove its security attributes. Compared with the existing protocol, our protocol is more efficient.
基金Supported by the National Natural Science Foundation of China (60673070)the Natural Science Foundation of Jiangsu Province,China (BK2006217)
文摘Certificateless public key cryptography (CL-PKC) enjoys the advantage of identity based cryptography without suffering from its inherent key escrow problem. In this paper, a new efficient certificateless public key encryption scheme is proposed and its security can reach chosen-ciphertext (CCA2) secure in the random oracle model assuming the CDH and p-BDHI problem are difficult. A comparison shows that the efficiency of the proposed scheme is better than all known paring-based certificateless public key encryption schemes in the random oracle model.
基金supported by the Key Project of Natural Science Basic Research Plan of Shaanxi Province under the Grant 2020JZ-54.
文摘Threshold signature has been widely used in electronic wills,electronic elections,cloud computing,secure multiparty computation and other fields.Until now,certificateless threshold signature schemes are all based on traditional mathematic theory,so they cannot resist quantum computing attacks.In view of this,we combine the advantages of lattice-based cryptosystem and certificateless cryptosystem to construct a certificateless threshold signature from lattice(LCLTS)that is efficient and resistant to quantum algorithm attacks.LCLTS has the threshold characteristics and can resist the quantum computing attacks,and the analysis shows that it is unforgeable against the adaptive Chosen-Message Attacks(UF-CMA)with the difficulty of Inhomogeneous Small Integer Solution(ISIS)problem.In addition,LCLTS solves the problems of the certificate management through key escrow.
基金Project supported by the National Natural Science Foundation of China(Nos.61772009 and U1736112)the Fundamental Research Funds for the Central Universities,China(Nos.2016B10114 and 2017B17014)the Natural Science Foundation of Jiangsu Province,China(No.BK20181304)
文摘Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.
基金Supported bythe National Natural Science Foundationof China (60225007 ,60572155) the Science and Technology ResearchProject of Shanghai (04DZ07067)
文摘In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/server setting is proposed, which uses pairings on certain elliptic curves. We show that the newly proposed key agreement protocol is practical and of great efficiency, meanwhile, it satisfies every desired security require ments for key agreement protocols.
基金Supported by the National Natural Science Foundation of China (90204012, 60573035, 60573036) and the University IT Research Center Project of Korea
文摘Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present an efficient constant-round group key exchange protocol, which is provably secure under the intractability of computation Diffie-Hellman problem. Our protocol is a contributory key exchange with perfect forward secrecy and has only two communication rounds. So it is more efficient than other protocols. Moreover, our protocol provides a method to design efficient constant-round group key exchange protocols and most secret sharing schemes could be adopted to construct our protocol.
基金supported by the Natural Science Foundation of China(Grant No.10990011 & No.60763009)
文摘Self-Generated-Certificate Public Key Cryptography(SGC-PKC) ,is the enhanced version of Certificateless Public Key Cryptography(CL-PKC) . It preserves all advantages of CL-PKC. Similar to CL-PKC,every user is given a partial private key by the KGC and generates his own private key and corresponding public key. In addition,it can defend against the Denial-of-Decryption(DoD) Attack. In this paper,we propose a new approach to construction SGC-PKE scheme that derived from a new application of chameleon hash and give a concrete scheme. It is the first scheme which has flexible public key and reaches Girault's trusted level 3,the same level as is enjoyed in a traditional PKI.
基金This work is supported by the University of Malaya IIRG Grant(IIRG008A-19IISSN),Ministry of Education FRGS Grant(FP055-2019A)This work was also supported by Grant System of University of Zilina No.1/2020.(Project No.7962)partially supported by the Slovak Grant Agency for Science(VEGA)under Grant Number 1/0157/21.The authors are grateful to the Taif University Researchers Supporting Project(Number TURSP-2020/36),Taif University,Taif,Saudi Arabia.
文摘Industrial internet of things (IIoT) is the usage of internet of things(IoT) devices and applications for the purpose of sensing, processing andcommunicating real-time events in the industrial system to reduce the unnecessary operational cost and enhance manufacturing and other industrial-relatedprocesses to attain more profits. However, such IoT based smart industriesneed internet connectivity and interoperability which makes them susceptibleto numerous cyber-attacks due to the scarcity of computational resourcesof IoT devices and communication over insecure wireless channels. Therefore, this necessitates the design of an efficient security mechanism for IIoTenvironment. In this paper, we propose a hyperelliptic curve cryptography(HECC) based IIoT Certificateless Signcryption (IIoT-CS) scheme, with theaim of improving security while lowering computational and communicationoverhead in IIoT environment. HECC with 80-bit smaller key and parameterssizes offers similar security as elliptic curve cryptography (ECC) with 160-bitlong key and parameters sizes. We assessed the IIoT-CS scheme security byapplying formal and informal security evaluation techniques. We used Realor Random (RoR) model and the widely used automated validation of internet security protocols and applications (AVISPA) simulation tool for formalsecurity analysis and proved that the IIoT-CS scheme provides resistance tovarious attacks. Our proposed IIoT-CS scheme is relatively less expensivecompared to the current state-of-the-art in terms of computational cost andcommunication overhead. Furthermore, the IIoT-CS scheme is 31.25% and 51.31% more efficient in computational cost and communication overhead,respectively, compared to the most recent protocol.
文摘Cloud Computing expands its usability to various fields that utilize data and store it in a common space that is required for computing and the purpose of analysis as like the IoT devices.These devices utilize the cloud for storing and retrieving data since the devices are not capable of storing processing data on its own.Cloud Computing provides various services to the users like the IaaS,PaaS and SaaS.The major drawback that is faced by cloud computing include the Utilization of Cloud services for the storage of data that could be accessed by all the users related to cloud.The use of Public Key Encryptions with keyword search(PEKS)provides security against the untrustworthy third-party search capability on publicly encryption keys without revealing the data’s contents.But the Security concerns of PEKs arise when Inside Keywords Guessing attacks(IKGA),is identified in the system due to the untrusted server presume the keyword in trapdoor.This issue could be solved by using various algorithms like the Certificateless Hashed Public Key Authenticated Encryption with Keyword Search(CL-HPAEKS)which utilizes the Modified Elliptic Curve Cryptography(MECC)along with the Mutation Centred flower pollinations algorithm(CM-FPA)that is used in enhancing the performance of the algorithm using the Optimization in keys.The additional use of Message Digests 5(MD5)hash function in the system enhances the security Level that is associated with the system.The system that is proposed achieves the security level performance of 96 percent and the effort consumed by the algorithm is less compared to the other encryption techniques.
基金Supported by the National Natural Science Foundation of China(60903175,60703048)the Natural Science Foundation of Hubei Province (2009CBD307,2008CDB352)
文摘The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 61202447), Natural Science Foundation of Hebei Province of China (F2013501066), Northeastern University at Qinhuangdao Science and Technology Support Program (xnk201307).
文摘As an improtant cryptographic scheme, signcryption scheme has been widely used in applications since it could provide both of signature and encryption. With the development of the certificateless public key cryptography (CLPKC), many certificatelss signcryption (CLSC) schemes using bilinear pairing hve been proposed. Comparated other operations, the bilinear pairing operaion is much more compulicated. Therefore, CLSC scheme without bilinear pairing is more suitable for applications. Recently, Jing et al. proposed a CLSC scheme without bilinear pairing and claimed their scheme is secure against two types of adversaries. In this paper, we will show their scheme provide neither unforgeability property nor confidentiality property. To improve security, we also propose a new CLSC scheme without pairing and demonstrate it is provably secure in the random oracle model.
文摘Certificateless public key cryptography elimi- nates inherent key escrow problem in identity-based cryptog- raphy, and does not yet requires certificates as in the tradi- tional public key infrastructure. In this paper, we give crypt- analysis to Hwang et al.'s certificateless encryption scheme which is the first concrete certificateless encryption scheme that can be proved to be secure against "malicious-but- passive" key generation center (KGC) attack in the stan- dard model. Their scheme is proved to be insecure even in a weaker security model called "honest-but-curious" KGC at- tack model. We then propose an improved scheme which is really secure against "malicious-but-passive" KGC attack in the standard model.