Tag key encapsulation mechanism (Tag-KEM)/data encapsulation mechanism (DEM) is a hybrid framework proposed in 2005. Tag-t(EM is one of its parts by using public-key encryption (PKE) technique to encapsulate a ...Tag key encapsulation mechanism (Tag-KEM)/data encapsulation mechanism (DEM) is a hybrid framework proposed in 2005. Tag-t(EM is one of its parts by using public-key encryption (PKE) technique to encapsulate a symmetric key. In hybrid encryptions, the long-raessage PKE is not desired due to its slow operation. A general method is presented for constructing Tag-KEM schemes with short-message PKEs. The chosen ciphertext security is proved in the random oracle model. In the method, the treatment of the tag part brings no additional ciphertext redundancy. Among all the methods for constructing Tag-KEM, the method is the first one without any validity checking on the tag part, thus showing that the Tag-KEM/DEM framework is superior to KEM+DEM one.展开更多
Searchable public key encryption is a useful cryptographic paradigm that enables an untrustworthy server to retrieve the encrypted data without revealing the contents of the data. It offers a promising solution to enc...Searchable public key encryption is a useful cryptographic paradigm that enables an untrustworthy server to retrieve the encrypted data without revealing the contents of the data. It offers a promising solution to encrypted data retrieval in cryptographic cloud storage. Certificateless public key cryptography (CLPKC) is a novel cryptographic primitive that has many merits. It overcomes the key escrow problem in identity-based cryptography (IBC) and the cumbersome certificate problem in conventional public key cryptography (PKC). Motivated by the appealing features of CLPKC, several certificateless encryption with keyword search (CLEKS) schemes have been presented in the literature. But, our cryptanalysis demonstrates that the previously proposed CLEKS frameworks suffer from the security vulnerability caused by the keyword guessing attack. To remedy the security weakness in the previous frameworks and provide resistance against both inside and outside keyword guessing attacks, we propose a new CLEKS framework. Under the new framework, we design a concrete CLEKS scheme and formally prove its security in the random oracle model. Compared with previous two CLEKS schemes, the proposed scheme has better overall performance while offering stronger security guarantee as it withstands the existing known types of keyword guessing attacks.展开更多
Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes ...Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes have been established on Identity-Based Cryptography (IBC) with key escrow problem inherently. Such problem severely restricts the promotion of IBC-based Public Key Infrastructure including PEKS component. Hence, Certificateless Public Key Cryptography (CLPKC) is efficient to remove such problem. CLPKC is introduced into PEKS, and a general model of Certificateless PEKS (CLPEKS) is formalized. In addition, a practical CLPEKS scheme is constructed with security and efficiency analyses. The proposal is secure channel free, and semantically secure against adaptive chosen keyword attack and keyword guessing attack. To illustrate the superiority, massive experiments are conducted on Enron Email dataset which is famous in information retrieval field. Compared with existed constructions, CLPEKS improves the efficiency in theory and removes the key escrow problem.展开更多
Investigated the properties of LUCas sequence(LUC), the paper proposed a new variant of (probabilistic) public-key encryption scheme. Security analysis of the proposed encryption schemes shows that its one-wayness is ...Investigated the properties of LUCas sequence(LUC), the paper proposed a new variant of (probabilistic) public-key encryption scheme. Security analysis of the proposed encryption schemes shows that its one-wayness is equivalent to partial LUC discrete logarithm problem in ZN, and for the proposed probabilistic encryption scheme, its semantic security is equivalent to decisional LUC Diffie-Hellman problem in ZN. At last, the efficiency of the proposed schemes is briefly analyzed.展开更多
As the use of cloud storage for various services increases,the amount of private personal information along with data stored in the cloud storage is also increasing.To remotely use the data stored on the cloud storage...As the use of cloud storage for various services increases,the amount of private personal information along with data stored in the cloud storage is also increasing.To remotely use the data stored on the cloud storage,the data to be stored needs to be encrypted for this reason.Since“searchable encryption”is enable to search on the encrypted data without any decryption,it is one of convenient solutions for secure data management.A public key encryption with keyword search(for short,PEKS)is one of searchable encryptions.Abdalla et al.firstly defined IND-CCA security for PEKS to enhance it’s security and proposed consistent IND-CCA secure PEKS based on the“robust”ANO-CCA secure identity-based encryption(IBE).In this paper,we propose two generic constructions of consistent IND-CCA secure PEKS combining(1)a hierarchical identity based encryption(for short,HIBE)and a signature scheme or(2)a HIBE,an encapsulation,and a message authentication code(for short,MAC)scheme.Our generic constructions identify that HIBE requires the security of a signature or a MAC as well as the weaker“ANO-CPA security(resp.,IND-CPA security)”of HIBE than“ANOCCA security(resp.,IND-CCA security)”of IBE required in for achieving IND-CCA secure(resp.,consistent)PEKS.Finally,we prove that our generic constructions satisfy IND-CCA security and consistency under the security models.展开更多
The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved...The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.展开更多
Cloud Computing expands its usability to various fields that utilize data and store it in a common space that is required for computing and the purpose of analysis as like the IoT devices.These devices utilize the clo...Cloud Computing expands its usability to various fields that utilize data and store it in a common space that is required for computing and the purpose of analysis as like the IoT devices.These devices utilize the cloud for storing and retrieving data since the devices are not capable of storing processing data on its own.Cloud Computing provides various services to the users like the IaaS,PaaS and SaaS.The major drawback that is faced by cloud computing include the Utilization of Cloud services for the storage of data that could be accessed by all the users related to cloud.The use of Public Key Encryptions with keyword search(PEKS)provides security against the untrustworthy third-party search capability on publicly encryption keys without revealing the data’s contents.But the Security concerns of PEKs arise when Inside Keywords Guessing attacks(IKGA),is identified in the system due to the untrusted server presume the keyword in trapdoor.This issue could be solved by using various algorithms like the Certificateless Hashed Public Key Authenticated Encryption with Keyword Search(CL-HPAEKS)which utilizes the Modified Elliptic Curve Cryptography(MECC)along with the Mutation Centred flower pollinations algorithm(CM-FPA)that is used in enhancing the performance of the algorithm using the Optimization in keys.The additional use of Message Digests 5(MD5)hash function in the system enhances the security Level that is associated with the system.The system that is proposed achieves the security level performance of 96 percent and the effort consumed by the algorithm is less compared to the other encryption techniques.展开更多
Despite the large number of certificateless encryption schemes proposed recently, many of them have been found insecure under a practical attack, called malicious-but-passive KGC (Key Generation Center) attack. In t...Despite the large number of certificateless encryption schemes proposed recently, many of them have been found insecure under a practical attack, called malicious-but-passive KGC (Key Generation Center) attack. In this work we propose the first generic construction of certificateless encryption, which can be proven secure against malicious-but- passive KGC attacks in the standard model. In order to encrypt a message of any length, we consider the KEM/DEM (key encapsulation mechanism/data encapsulation mechanism) framework in the certificateless setting, and propose a generic construction of certificateless key encapsulation mechanism (CL-KEM) secure against malicious-but-passive KGC attacks in the standard model. It is based on an identity-based KEM, a public key encryption and a message authentication code. The high efficiency of our construction is due to the efficient implementations of these underlying building blocks, and is comparable to Bentahar et al.'s CL-KEMs, which have only been proven secure under the random oracle model with no consideration of the malicious-but-passive KGC attack. We also introduce the notion of certificateless tag-based KEM (CL-TKEM), which is an extension of Abe et al.'s work to the certificateless setting. We show that an efficient CL-TKEM can be constructed by modifying our CL-KEM scheme. We also show that with a CL-TKEM and a data encapsulation mechanism secure under our proposed security model, an efficient certificateless hybrid encryption can be constructed by applying Abe et al.'s transformation in the certificateless setting.展开更多
In recent years,much attention has been focused on designing provably secure cryptographic primitives in the presence of key leakage.Many constructions of leakage-resilient cryptographic primitives have been proposed....In recent years,much attention has been focused on designing provably secure cryptographic primitives in the presence of key leakage.Many constructions of leakage-resilient cryptographic primitives have been proposed.However,for any polynomial time adversary,most existing leakage-resilient cryptographic primitives cannot ensure that their outputs are random,and any polynomial time adversary can obtain a certain amount of leakage on the secret key from the corresponding output of a cryptographic primitive.In this study,to achieve better performance,a new construction of a chosen ciphertext attack 2(CCA2)secure,leakage-resilient,and certificateless public-key encryption scheme is proposed,whose security is proved based on the hardness of the classic decisional Diffie-Hellman assumption.According to our analysis,our method can tolerate leakage attacks on the private key.This method also achieves better performance because polynomial time adversaries cannot achieve leakage on the private key from the corresponding ciphertext,and a key leakage ratio of 1/2 can be achieved.Because of these good features,our method may be significant in practical applications.展开更多
With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protecti...With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.展开更多
Identity-based hash proof system is a basic and important primitive. Ittographic schemes and protocols that are secure against key-leakage attacks. In thisupdatable identity-based hash proof system, in which the relat...Identity-based hash proof system is a basic and important primitive. Ittographic schemes and protocols that are secure against key-leakage attacks. In thisupdatable identity-based hash proof system, in which the related master secret keyis widely utilized to construct cryp-paper, we introduce the concept ofand the identity secret key can beupdated securely. Then, we instantiate this primitive based on lattices in the standard model. Moreover, we introduce anapplication of this new primitive by giving a generic construction of leakage-resilient public-key encryption schemes withanonymity. This construction can be considered as the integration of the bounded-retrieval model and the continual leakagemodel. Compared with the existing leakage-resilient schemes, our construction not only is more efficient but also can resistmuch more key leakage.展开更多
Certificateless public key cryptography (CL-PKC) enjoys the advantage of identity based cryptography without suffering from its inherent key escrow problem. In this paper, a new efficient certificateless public key ...Certificateless public key cryptography (CL-PKC) enjoys the advantage of identity based cryptography without suffering from its inherent key escrow problem. In this paper, a new efficient certificateless public key encryption scheme is proposed and its security can reach chosen-ciphertext (CCA2) secure in the random oracle model assuming the CDH and p-BDHI problem are difficult. A comparison shows that the efficiency of the proposed scheme is better than all known paring-based certificateless public key encryption schemes in the random oracle model.展开更多
In current cloud computing system, large amounts of sensitive data are shared to other cloud users. To keep these data confidentiality, data owners should encrypt their data before outsourcing. We choose proxy reencry...In current cloud computing system, large amounts of sensitive data are shared to other cloud users. To keep these data confidentiality, data owners should encrypt their data before outsourcing. We choose proxy reencryption (PRE) as the cloud data encryption technique. In a PRE system, a semi-trusted proxy can transform a ciphertext under one public key into a ciphertext of the same message under another public key, but the proxy cannot gain any information about the message. In this paper, we propose a certificateless PRE (CL-PRE) scheme without pairings. The security of the proposed scheme can be proved to be equivalent to the computational Dire- Hellman (CDH) problem in the random oracle model. Compared with other existing CL-PRE schemes, our scheme requires less computation cost and is significantly more efficient. The new scheme does not need the public key certificates to guarantee validity of public keys and solves the key escrow problem in identity-based public key cryptography.展开更多
The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the au...The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.展开更多
Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in ...Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.展开更多
The Multi-receiver Encryption(MRE)scheme can meet the secure data transmission requirements in multicast and broadcast scenarios.To meet compliance,critical information infrastructure in China should be protected with...The Multi-receiver Encryption(MRE)scheme can meet the secure data transmission requirements in multicast and broadcast scenarios.To meet compliance,critical information infrastructure in China should be protected with Chinese national commercial cryptographic algorithms.Designing an MRE scheme based on Elliptic Curve Cryptography(ECC)is one of the current design methods with better flexibility and performance.However,the research on MRE schemes based on SM2 elliptic curve public-key cryptography is still in a blank state.This paper proposes a Certificateless SM2-based Multireceiver Encryption(CL-SM2-MRE)scheme.We prove the security of the CL-SM2-MRE scheme under the Random Oracle Model(ROM)and analyze the performance.展开更多
无证书公钥密码体制(certificateless public key cryptography,简称CL-PKC)是在基于身份的公钥密码体制(identity-based public key cryptography,简称ID-PKC)的基础上提出来的一种新型公钥密码体制,没有密钥托管问题、不需要使用公钥...无证书公钥密码体制(certificateless public key cryptography,简称CL-PKC)是在基于身份的公钥密码体制(identity-based public key cryptography,简称ID-PKC)的基础上提出来的一种新型公钥密码体制,没有密钥托管问题、不需要使用公钥证书,使得无证书公钥密码体制从其概念提出的初始就受到了学术界和工业界的极大关注.从2003年至今,它一直是密码学和信息安全领域非常活跃的研究热点.其理论和技术在不断地丰富和发展.到目前为止,已经积累了大量的研究成果.将对这些成果进行较为系统的整理、分析、比较和简要的评述,并探讨该领域研究尚存在的不足及值得进一步研究的问题.展开更多
基金Supported by the National Natural Science Foundation of China(60603010,60970120)~~
文摘Tag key encapsulation mechanism (Tag-KEM)/data encapsulation mechanism (DEM) is a hybrid framework proposed in 2005. Tag-t(EM is one of its parts by using public-key encryption (PKE) technique to encapsulate a symmetric key. In hybrid encryptions, the long-raessage PKE is not desired due to its slow operation. A general method is presented for constructing Tag-KEM schemes with short-message PKEs. The chosen ciphertext security is proved in the random oracle model. In the method, the treatment of the tag part brings no additional ciphertext redundancy. Among all the methods for constructing Tag-KEM, the method is the first one without any validity checking on the tag part, thus showing that the Tag-KEM/DEM framework is superior to KEM+DEM one.
基金supported by the National Natural Science Foundation of China under Grant Nos. 61772009 and U1736112the Natural Science Foundation of Jiangsu Province under Grant Nos. BK20161511 and BK20181304
文摘Searchable public key encryption is a useful cryptographic paradigm that enables an untrustworthy server to retrieve the encrypted data without revealing the contents of the data. It offers a promising solution to encrypted data retrieval in cryptographic cloud storage. Certificateless public key cryptography (CLPKC) is a novel cryptographic primitive that has many merits. It overcomes the key escrow problem in identity-based cryptography (IBC) and the cumbersome certificate problem in conventional public key cryptography (PKC). Motivated by the appealing features of CLPKC, several certificateless encryption with keyword search (CLEKS) schemes have been presented in the literature. But, our cryptanalysis demonstrates that the previously proposed CLEKS frameworks suffer from the security vulnerability caused by the keyword guessing attack. To remedy the security weakness in the previous frameworks and provide resistance against both inside and outside keyword guessing attacks, we propose a new CLEKS framework. Under the new framework, we design a concrete CLEKS scheme and formally prove its security in the random oracle model. Compared with previous two CLEKS schemes, the proposed scheme has better overall performance while offering stronger security guarantee as it withstands the existing known types of keyword guessing attacks.
基金This research was supported by the National Science Foundation of China for Funding Projects (61173089,61472298) and National Statistical Science Program of China(2013LZ46).
文摘Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes have been established on Identity-Based Cryptography (IBC) with key escrow problem inherently. Such problem severely restricts the promotion of IBC-based Public Key Infrastructure including PEKS component. Hence, Certificateless Public Key Cryptography (CLPKC) is efficient to remove such problem. CLPKC is introduced into PEKS, and a general model of Certificateless PEKS (CLPEKS) is formalized. In addition, a practical CLPEKS scheme is constructed with security and efficiency analyses. The proposal is secure channel free, and semantically secure against adaptive chosen keyword attack and keyword guessing attack. To illustrate the superiority, massive experiments are conducted on Enron Email dataset which is famous in information retrieval field. Compared with existed constructions, CLPEKS improves the efficiency in theory and removes the key escrow problem.
基金Supported by the 973 State Key Project of China (No.G1999035803)the National Natural Science Foundation of China (No.69931010).
文摘Investigated the properties of LUCas sequence(LUC), the paper proposed a new variant of (probabilistic) public-key encryption scheme. Security analysis of the proposed encryption schemes shows that its one-wayness is equivalent to partial LUC discrete logarithm problem in ZN, and for the proposed probabilistic encryption scheme, its semantic security is equivalent to decisional LUC Diffie-Hellman problem in ZN. At last, the efficiency of the proposed schemes is briefly analyzed.
文摘As the use of cloud storage for various services increases,the amount of private personal information along with data stored in the cloud storage is also increasing.To remotely use the data stored on the cloud storage,the data to be stored needs to be encrypted for this reason.Since“searchable encryption”is enable to search on the encrypted data without any decryption,it is one of convenient solutions for secure data management.A public key encryption with keyword search(for short,PEKS)is one of searchable encryptions.Abdalla et al.firstly defined IND-CCA security for PEKS to enhance it’s security and proposed consistent IND-CCA secure PEKS based on the“robust”ANO-CCA secure identity-based encryption(IBE).In this paper,we propose two generic constructions of consistent IND-CCA secure PEKS combining(1)a hierarchical identity based encryption(for short,HIBE)and a signature scheme or(2)a HIBE,an encapsulation,and a message authentication code(for short,MAC)scheme.Our generic constructions identify that HIBE requires the security of a signature or a MAC as well as the weaker“ANO-CPA security(resp.,IND-CPA security)”of HIBE than“ANOCCA security(resp.,IND-CCA security)”of IBE required in for achieving IND-CCA secure(resp.,consistent)PEKS.Finally,we prove that our generic constructions satisfy IND-CCA security and consistency under the security models.
文摘The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.
文摘Cloud Computing expands its usability to various fields that utilize data and store it in a common space that is required for computing and the purpose of analysis as like the IoT devices.These devices utilize the cloud for storing and retrieving data since the devices are not capable of storing processing data on its own.Cloud Computing provides various services to the users like the IaaS,PaaS and SaaS.The major drawback that is faced by cloud computing include the Utilization of Cloud services for the storage of data that could be accessed by all the users related to cloud.The use of Public Key Encryptions with keyword search(PEKS)provides security against the untrustworthy third-party search capability on publicly encryption keys without revealing the data’s contents.But the Security concerns of PEKs arise when Inside Keywords Guessing attacks(IKGA),is identified in the system due to the untrusted server presume the keyword in trapdoor.This issue could be solved by using various algorithms like the Certificateless Hashed Public Key Authenticated Encryption with Keyword Search(CL-HPAEKS)which utilizes the Modified Elliptic Curve Cryptography(MECC)along with the Mutation Centred flower pollinations algorithm(CM-FPA)that is used in enhancing the performance of the algorithm using the Optimization in keys.The additional use of Message Digests 5(MD5)hash function in the system enhances the security Level that is associated with the system.The system that is proposed achieves the security level performance of 96 percent and the effort consumed by the algorithm is less compared to the other encryption techniques.
文摘Despite the large number of certificateless encryption schemes proposed recently, many of them have been found insecure under a practical attack, called malicious-but-passive KGC (Key Generation Center) attack. In this work we propose the first generic construction of certificateless encryption, which can be proven secure against malicious-but- passive KGC attacks in the standard model. In order to encrypt a message of any length, we consider the KEM/DEM (key encapsulation mechanism/data encapsulation mechanism) framework in the certificateless setting, and propose a generic construction of certificateless key encapsulation mechanism (CL-KEM) secure against malicious-but-passive KGC attacks in the standard model. It is based on an identity-based KEM, a public key encryption and a message authentication code. The high efficiency of our construction is due to the efficient implementations of these underlying building blocks, and is comparable to Bentahar et al.'s CL-KEMs, which have only been proven secure under the random oracle model with no consideration of the malicious-but-passive KGC attack. We also introduce the notion of certificateless tag-based KEM (CL-TKEM), which is an extension of Abe et al.'s work to the certificateless setting. We show that an efficient CL-TKEM can be constructed by modifying our CL-KEM scheme. We also show that with a CL-TKEM and a data encapsulation mechanism secure under our proposed security model, an efficient certificateless hybrid encryption can be constructed by applying Abe et al.'s transformation in the certificateless setting.
基金Project supported by the National Key R&D Program of China(No.2017YFB0802000)the National Natural Science Foundation of China(Nos.61572303 and 61772326)+2 种基金the National Cryptography Development Fund During the 13thFive-Year Plan Period,China(No.MMJJ20170216)the Foundation of State Key Laboratory of Information Security,China(No.2017-MS-03)the Fundamental Research Funds for the Central Universities,China(No.GK201803064)
文摘In recent years,much attention has been focused on designing provably secure cryptographic primitives in the presence of key leakage.Many constructions of leakage-resilient cryptographic primitives have been proposed.However,for any polynomial time adversary,most existing leakage-resilient cryptographic primitives cannot ensure that their outputs are random,and any polynomial time adversary can obtain a certain amount of leakage on the secret key from the corresponding output of a cryptographic primitive.In this study,to achieve better performance,a new construction of a chosen ciphertext attack 2(CCA2)secure,leakage-resilient,and certificateless public-key encryption scheme is proposed,whose security is proved based on the hardness of the classic decisional Diffie-Hellman assumption.According to our analysis,our method can tolerate leakage attacks on the private key.This method also achieves better performance because polynomial time adversaries cannot achieve leakage on the private key from the corresponding ciphertext,and a key leakage ratio of 1/2 can be achieved.Because of these good features,our method may be significant in practical applications.
基金Wenzhou Key Scientific and Technological Projects(No.ZG2020031)Wenzhou Polytechnic Research Projects(No.WZY2021002)+3 种基金Key R&D Projects in Zhejiang Province(No.2021C01117)Major Program of Natural Science Foundation of Zhejiang Province(LD22F020002)the Cloud Security Key Technology Research Laboratorythe Researchers Supporting Project Number(RSP2023R509),King Saud University,Riyadh,Saudi Arabia.
文摘With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.
基金This work was supported by the National Key Research and Development Program of China under Grant No. 2017YFt30802000, the National Natural Science Foundation of China under Grant Nos. 61802241, 61772326, 61572303, 61872229, 61802242, and 61602290, the National Natural Science Foundation of China for International Young Scientists under Grant No. 61750110528, the National Cryp-tographv Development Fund during the 13th Five-Year Plan Period of China under Grant Nos. MMJJ20170216 and MMJJ20180217, the Foundation of State Key Laboratory of Information Security of China under Grant No. 2017-MS-03, and the Fundamental Re- search Funds for the Central Universities of China under Grant Nos. GK201603084, GK201702004, GK201603092, GK201603093, and GK201703062.
文摘Identity-based hash proof system is a basic and important primitive. Ittographic schemes and protocols that are secure against key-leakage attacks. In thisupdatable identity-based hash proof system, in which the related master secret keyis widely utilized to construct cryp-paper, we introduce the concept ofand the identity secret key can beupdated securely. Then, we instantiate this primitive based on lattices in the standard model. Moreover, we introduce anapplication of this new primitive by giving a generic construction of leakage-resilient public-key encryption schemes withanonymity. This construction can be considered as the integration of the bounded-retrieval model and the continual leakagemodel. Compared with the existing leakage-resilient schemes, our construction not only is more efficient but also can resistmuch more key leakage.
基金Supported by the National Natural Science Foundation of China (60673070)the Natural Science Foundation of Jiangsu Province,China (BK2006217)
文摘Certificateless public key cryptography (CL-PKC) enjoys the advantage of identity based cryptography without suffering from its inherent key escrow problem. In this paper, a new efficient certificateless public key encryption scheme is proposed and its security can reach chosen-ciphertext (CCA2) secure in the random oracle model assuming the CDH and p-BDHI problem are difficult. A comparison shows that the efficiency of the proposed scheme is better than all known paring-based certificateless public key encryption schemes in the random oracle model.
基金the National Natural Science Foundation of China(No.61133014)
文摘In current cloud computing system, large amounts of sensitive data are shared to other cloud users. To keep these data confidentiality, data owners should encrypt their data before outsourcing. We choose proxy reencryption (PRE) as the cloud data encryption technique. In a PRE system, a semi-trusted proxy can transform a ciphertext under one public key into a ciphertext of the same message under another public key, but the proxy cannot gain any information about the message. In this paper, we propose a certificateless PRE (CL-PRE) scheme without pairings. The security of the proposed scheme can be proved to be equivalent to the computational Dire- Hellman (CDH) problem in the random oracle model. Compared with other existing CL-PRE schemes, our scheme requires less computation cost and is significantly more efficient. The new scheme does not need the public key certificates to guarantee validity of public keys and solves the key escrow problem in identity-based public key cryptography.
基金Supported by the National Natural Science Foundation of China(60903175,60703048)the Natural Science Foundation of Hubei Province (2009CBD307,2008CDB352)
文摘The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.
基金Project supported by the National Natural Science Foundation of China(Nos.61772009 and U1736112)the Fundamental Research Funds for the Central Universities,China(Nos.2016B10114 and 2017B17014)the Natural Science Foundation of Jiangsu Province,China(No.BK20181304)
文摘Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.
基金The work was supported by the National Key Research and Development Program of China(2021YFA1000600)the National Natural Science Foundation of China(U21A20466,62272350,U1865202)+3 种基金the Special Project on Science and Technology Program of Hubei Province,China(2020AEA013,2021BAA025)the Fok Ying Tung Foundation,China(171057)the National Cryptography Development Fund,China(MMJJ20180105)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(CKSF2019526/TG3).
文摘The Multi-receiver Encryption(MRE)scheme can meet the secure data transmission requirements in multicast and broadcast scenarios.To meet compliance,critical information infrastructure in China should be protected with Chinese national commercial cryptographic algorithms.Designing an MRE scheme based on Elliptic Curve Cryptography(ECC)is one of the current design methods with better flexibility and performance.However,the research on MRE schemes based on SM2 elliptic curve public-key cryptography is still in a blank state.This paper proposes a Certificateless SM2-based Multireceiver Encryption(CL-SM2-MRE)scheme.We prove the security of the CL-SM2-MRE scheme under the Random Oracle Model(ROM)and analyze the performance.
文摘无证书公钥密码体制(certificateless public key cryptography,简称CL-PKC)是在基于身份的公钥密码体制(identity-based public key cryptography,简称ID-PKC)的基础上提出来的一种新型公钥密码体制,没有密钥托管问题、不需要使用公钥证书,使得无证书公钥密码体制从其概念提出的初始就受到了学术界和工业界的极大关注.从2003年至今,它一直是密码学和信息安全领域非常活跃的研究热点.其理论和技术在不断地丰富和发展.到目前为止,已经积累了大量的研究成果.将对这些成果进行较为系统的整理、分析、比较和简要的评述,并探讨该领域研究尚存在的不足及值得进一步研究的问题.