Zn2GeO4 nanorods were prepared by a surfactant-assisted solution phase route.The as-prepared products were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission ...Zn2GeO4 nanorods were prepared by a surfactant-assisted solution phase route.The as-prepared products were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),inductively coupled plasma atomic emission spectrometer(ICP-AES),UV-vis diffuse reflection spectroscopy and photoluminescence(PL) spectroscopy.The possible formation mechanism of Zn2GeO4 nanorods was discussed.It was supposed that the CTA+ cations preferentially adsorb on the planes of Zn2GeO4 nanorods,leading to preferential growth along the c-axis to form the Zn2GeO4 rods with larger aspect ratio and higher surface area,which showed the improved photocatalytic activity for photoreduction of CO2.The photoluminescence(PL) property of Zn2GeO4 nanorods was investigated through the emission spectra.展开更多
An efficient and greener protocol for the synthesis of 1-halo-naphthols by the action of hydrogen peroxide and alkali metal halides in aqueous micellar media is been described in the present work. This is an environme...An efficient and greener protocol for the synthesis of 1-halo-naphthols by the action of hydrogen peroxide and alkali metal halides in aqueous micellar media is been described in the present work. This is an environmentally clean and safe procedure, which involved insitu generation of the active halogen in presence of alkali halides. Cationic surfactants such as cetyltrimethylammoniumbromide (CTAB) and cetyltrimethylammoniumchloride (CTAC) were found to facilitate efficiency of halogenation in aqueous media.展开更多
以阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)对油茶果壳进行改性,制备CTAB-油茶果壳(CTABCOS)吸附材料,并采用批实验法对其对水溶液中甲基橙的吸附去除进行了研究。考察了溶液p H、吸附剂用量和离子强度等对水溶液中甲基橙的吸附影响...以阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)对油茶果壳进行改性,制备CTAB-油茶果壳(CTABCOS)吸附材料,并采用批实验法对其对水溶液中甲基橙的吸附去除进行了研究。考察了溶液p H、吸附剂用量和离子强度等对水溶液中甲基橙的吸附影响,并研究了体系的吸附动力学和吸附热力学特征。结果表明,向100 m L浓度为50 mg/L的甲基橙溶液中加入0.40 g CTAB-COS,在最佳实验条件下,CTAB-COS对甲基橙的去除率可达96.66%。溶液离子强度增大,甲基橙去除率降低。CTAB-COS对甲基橙的吸附行为符合拟二级动力学模型,吸附等温线可用Langmuir模型进行较好拟合,在20℃时最大吸附量为18.31 mg/g。吸附热力学结果表明,吸附过程为可自发进行的放热过程。再生性实验结果表明,再生6次后,CTAB-COS对甲基橙的吸附去除率仍可达到80%。该改性油茶果壳可应用于阴离子型染料废水的吸附法处理。展开更多
基金Project(51208102)supported by the National Natural Science Foundation of China
文摘Zn2GeO4 nanorods were prepared by a surfactant-assisted solution phase route.The as-prepared products were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),inductively coupled plasma atomic emission spectrometer(ICP-AES),UV-vis diffuse reflection spectroscopy and photoluminescence(PL) spectroscopy.The possible formation mechanism of Zn2GeO4 nanorods was discussed.It was supposed that the CTA+ cations preferentially adsorb on the planes of Zn2GeO4 nanorods,leading to preferential growth along the c-axis to form the Zn2GeO4 rods with larger aspect ratio and higher surface area,which showed the improved photocatalytic activity for photoreduction of CO2.The photoluminescence(PL) property of Zn2GeO4 nanorods was investigated through the emission spectra.
文摘An efficient and greener protocol for the synthesis of 1-halo-naphthols by the action of hydrogen peroxide and alkali metal halides in aqueous micellar media is been described in the present work. This is an environmentally clean and safe procedure, which involved insitu generation of the active halogen in presence of alkali halides. Cationic surfactants such as cetyltrimethylammoniumbromide (CTAB) and cetyltrimethylammoniumchloride (CTAC) were found to facilitate efficiency of halogenation in aqueous media.
文摘以阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)对油茶果壳进行改性,制备CTAB-油茶果壳(CTABCOS)吸附材料,并采用批实验法对其对水溶液中甲基橙的吸附去除进行了研究。考察了溶液p H、吸附剂用量和离子强度等对水溶液中甲基橙的吸附影响,并研究了体系的吸附动力学和吸附热力学特征。结果表明,向100 m L浓度为50 mg/L的甲基橙溶液中加入0.40 g CTAB-COS,在最佳实验条件下,CTAB-COS对甲基橙的去除率可达96.66%。溶液离子强度增大,甲基橙去除率降低。CTAB-COS对甲基橙的吸附行为符合拟二级动力学模型,吸附等温线可用Langmuir模型进行较好拟合,在20℃时最大吸附量为18.31 mg/g。吸附热力学结果表明,吸附过程为可自发进行的放热过程。再生性实验结果表明,再生6次后,CTAB-COS对甲基橙的吸附去除率仍可达到80%。该改性油茶果壳可应用于阴离子型染料废水的吸附法处理。