Thermoplastic polyimides(PIs)with shape memory potential have received growing attention in recent years.In this work,highperformance thermoplastic PIs were fabricated by introducing PIs with chain rigidity(r-PI)into ...Thermoplastic polyimides(PIs)with shape memory potential have received growing attention in recent years.In this work,highperformance thermoplastic PIs were fabricated by introducing PIs with chain rigidity(r-PI)into PI with chain flexibility(f-PI).The influences of molecular chain entanglement andπ-πinteractions on their thermomechanical and shape memory properties were investigated.The degree of molecular chain entanglement was quantitively characterized based on dynamic mechanical analysis(DMA).Theπ-πinteractions were investigated in detail by X-ray diffraction(XRD)and UV-Vis spectroscopy.It was found that the entanglement density increased andπ-πinteractions became stronger with the introduction of r-PI into f-PI,leading to the improvement of shape recovery.Moreover,a broad and increased glass transition temperature(T_(g))was achieved,endowing the PIs with multiple shape memory properties.The synergistic effects of increased entanglement density and enhancedπ-πinteractions were beneficial to regulating interchain interactions and thereby achieving high shape memory performance of the PIs.展开更多
By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/pol...By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/poly(styrene-co- maleic anhydride) (PMMA/SMA) blends presenting a typical lower critical solution temperature (LCST) behavior. The melt- mixed PMMA/SMA blends with a higher chain entanglement density present a lower cloud point (To) and shorter delay time, but lower phase separation rate at the given temperature than solution-cast ones, suggesting that for the polymer blends with different condensed state structure, thermodynamically more facilitation to phase separation (lower Tc) is not necessarily equivalent to faster kinetics (decomposition rate). The experimental results indicate that the lower Tc of melt-mixed sample is ascribed to smaller concentration fluctuation wavelength (Am) induced by higher entanglement degree, while higher entanglement degree in melt-mixed sample leads to a confined segmental dynamics and consequently a slower kinetics (decomposition rate) dominated by macromolecular diffusion at a comparable quench depth. These results reveal that the chain packing in polymer blends can remarkably influence the liquid-liquid phase separation behavior, which is a significant difference from decomposition of small molecular mixtures.展开更多
An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model stru...An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results展开更多
The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we re...The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we reported a novel method to assist the dissolving of UHMWPE in parafn oil without severe degradation in order to improve the tensile strength of resultant fbers.UHMWPE fbers with relatively high molecular weight and more excellent disentanglement efect were prepared by gel-spinning with UHMWPE suspension treated with supercritical carbon dioxide(SC-CO_(2)).The dynamic thermomechanical,mechanical and crystalline properties of UHMWPE extracted fbers and drawn fbers were researched comprehensively.UHMWPE extracted fbers obtained after SC-CO_(2) treatment display a higher molecular weight.More importantly,it is clear that the disentanglement of UHMWPE gel fbers gained by processing SC-CO_(2) has been signifcantly promoted compared with that without SC-CO_(2) treatment from dynamic thermomechanical and rheological results,which could also be demonstrated from the cross-sectional morphology of UHMWPE extracted fbers.Furthermore,the tensile strength of UHMWPE fbers prepared through SC-CO_(2) treating is able to attain 30.11 cN/dtex,increased by 10.3%in comparison to UHMWPE fbers gained without assistance of SC-CO_(2).Beyond that,the thermal behavior and crystallization performance of UHMWPE extracted fbers and drawn fbers acquired by way of SC-CO_(2) treatment have also been enhanced.展开更多
基金financially supported by the Engineering Research Center for Clean Production of Textile Printing and Dyeing,Ministry of Education(No.FZYR2021001)Shanghai Pujiang Program(No.19PJ1400400)Shanghai Key Laboratory of Lightweight Composite(No.2232019A4-04)。
文摘Thermoplastic polyimides(PIs)with shape memory potential have received growing attention in recent years.In this work,highperformance thermoplastic PIs were fabricated by introducing PIs with chain rigidity(r-PI)into PI with chain flexibility(f-PI).The influences of molecular chain entanglement andπ-πinteractions on their thermomechanical and shape memory properties were investigated.The degree of molecular chain entanglement was quantitively characterized based on dynamic mechanical analysis(DMA).Theπ-πinteractions were investigated in detail by X-ray diffraction(XRD)and UV-Vis spectroscopy.It was found that the entanglement density increased andπ-πinteractions became stronger with the introduction of r-PI into f-PI,leading to the improvement of shape recovery.Moreover,a broad and increased glass transition temperature(T_(g))was achieved,endowing the PIs with multiple shape memory properties.The synergistic effects of increased entanglement density and enhancedπ-πinteractions were beneficial to regulating interchain interactions and thereby achieving high shape memory performance of the PIs.
基金financially supported by the National Natural Science Foundation of China(No.51173165)the Fundamental Research Funds for the Central Universities(No.2013QNA4048)
文摘By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/poly(styrene-co- maleic anhydride) (PMMA/SMA) blends presenting a typical lower critical solution temperature (LCST) behavior. The melt- mixed PMMA/SMA blends with a higher chain entanglement density present a lower cloud point (To) and shorter delay time, but lower phase separation rate at the given temperature than solution-cast ones, suggesting that for the polymer blends with different condensed state structure, thermodynamically more facilitation to phase separation (lower Tc) is not necessarily equivalent to faster kinetics (decomposition rate). The experimental results indicate that the lower Tc of melt-mixed sample is ascribed to smaller concentration fluctuation wavelength (Am) induced by higher entanglement degree, while higher entanglement degree in melt-mixed sample leads to a confined segmental dynamics and consequently a slower kinetics (decomposition rate) dominated by macromolecular diffusion at a comparable quench depth. These results reveal that the chain packing in polymer blends can remarkably influence the liquid-liquid phase separation behavior, which is a significant difference from decomposition of small molecular mixtures.
文摘An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results
基金This research is supported by Shanghai International S&T Cooperation Fund(No.16160731302).
文摘The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we reported a novel method to assist the dissolving of UHMWPE in parafn oil without severe degradation in order to improve the tensile strength of resultant fbers.UHMWPE fbers with relatively high molecular weight and more excellent disentanglement efect were prepared by gel-spinning with UHMWPE suspension treated with supercritical carbon dioxide(SC-CO_(2)).The dynamic thermomechanical,mechanical and crystalline properties of UHMWPE extracted fbers and drawn fbers were researched comprehensively.UHMWPE extracted fbers obtained after SC-CO_(2) treatment display a higher molecular weight.More importantly,it is clear that the disentanglement of UHMWPE gel fbers gained by processing SC-CO_(2) has been signifcantly promoted compared with that without SC-CO_(2) treatment from dynamic thermomechanical and rheological results,which could also be demonstrated from the cross-sectional morphology of UHMWPE extracted fbers.Furthermore,the tensile strength of UHMWPE fbers prepared through SC-CO_(2) treating is able to attain 30.11 cN/dtex,increased by 10.3%in comparison to UHMWPE fbers gained without assistance of SC-CO_(2).Beyond that,the thermal behavior and crystallization performance of UHMWPE extracted fbers and drawn fbers acquired by way of SC-CO_(2) treatment have also been enhanced.