Effects of temperature during grain-filling on chain length distribution and structure characteristics of 4 early-seasonindica rice cultivars were investigated under the environment-controlled conditions. The plants a...Effects of temperature during grain-filling on chain length distribution and structure characteristics of 4 early-seasonindica rice cultivars were investigated under the environment-controlled conditions. The plants at flowering stage weresubjected to two temperature treatments until maturity (the mean dairy air temperature, 22 and 32C for optimum temperaturetreatment and high temperature treatment, respectively). The result showed that high temperature during grain-fillingsignificantly decreased the long B-chain content and increased the intermediate B-chain content. But the effect of hightemperature on other starch chains appeared to be cultivar-dependant. The crystalline characteristics of rice starch werealso affected by temperature during grain-filling. The intensity at 18 2q of X-ray diffraction pattern of rice samples underhigh temperature was higher than those under optimum temperature, though all rice starches performed A-crystallinetype. Moreover, the intensity at 18 2q was positive correlation with intermediate B-chain content and negative correlationwith long B-chain content.展开更多
Effects of nano-particle size on hydrocarbon production rates and distributions for precipitated Fe/Cu/La catalysts in Fischer-Tropsch synthesis were investigated.Nano-structured iron catalyst was prepared by micro-em...Effects of nano-particle size on hydrocarbon production rates and distributions for precipitated Fe/Cu/La catalysts in Fischer-Tropsch synthesis were investigated.Nano-structured iron catalyst was prepared by micro-emulsion method.The concept of two superimposed AndersonSchulz-Flory (ASF) distributions has been applied for the representation of the effects of reaction conditions and nano-particles size on kinetics parameters and product distributions.These results reveal that by reducing the particle size of catalyst,the break in ASF distributions was decreased.Also useful different kinetics equations for synthesis of C3 to C9 and C10 to C22 were determined by using α1 and α2 chain growth probabilities.展开更多
The dependencies of hydrocarbon product distributions of alkali promoted iron catalyst in Fischer-Tropsch synthesis have been studied. The concept of two superimposed Anderson-Schulz-Flory distributions has been appli...The dependencies of hydrocarbon product distributions of alkali promoted iron catalyst in Fischer-Tropsch synthesis have been studied. The concept of two superimposed Anderson-Schulz-Flory distributions has been applied for the representation of the effects of Mg, La and Ca promoters on product distributions. The FTS performance of the catalysts was tested in a fixed bed reactor under the conditions 563 K, 1.7 MPa, H2/CO = 1 and space velocities 4.86 and 13.28 nl·h^-1·gFe^-1. The results indicate that appropriate amounts of these promoters enhance the break in ASF distributions in the order Ca 〉 Mg 〉 La because of the rising of the catalyst surface basicity.展开更多
A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization coul...A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization could fulfill these multiple goals.In two-year experiments,two high yielding‘super’rice cultivars were grown with different N fertilization management regimes,including zero N input,local farmers’practice(LFP)with heavy N inputs,and optimized N fertilization(ONF).In ONF,by reducing N input,increasing planting density,and optimizing the ratio of urea application at different stages,N use efficiency and the physicochemical and textural properties of milled rice were improved at higher yield levels.Compared with LFP,yield and partial factor productivity of applied N(PFP)under ONF were increased(on average)by 1.70 and 13.06%,respectively.ONF increased starch and amylose content,and significantly decreased protein content.The contents of the short chains of A chain(degree of polymerization(DP)6-12)and B1 chain(DP 13-25)of amylopectin were significantly increased under ONF,which resulted in a decrease in the stability of rice starch crystals.ONF increased viscosity values and improved the thermodynamic properties of starch,which resulted in better eating and cooking quality of the rice.Thus,ONF could substantially compensate the negative effects caused by N fertilizer and achieve the multiple goals of higher grain quality and nitrogen use efficiency(NUE)at high yield levels.These results will be useful for applications of high quality rice production at high yield levels.展开更多
An optimized and high-performance Monte Carlo simulation is developed to take thorough account of four different cases of termination in styrene ATRP. According to the simulation results, the bimolecular termination r...An optimized and high-performance Monte Carlo simulation is developed to take thorough account of four different cases of termination in styrene ATRP. According to the simulation results, the bimolecular termination rate constant sharply drops throughout the polymerization when either chain-length dependency of termination rate constant, gel effect, or both together is applied to the simulation. In addition, as expected, the initiator is quickly decomposed at the early stages of the polymerization. The concentration of the catalyst in lower oxidation state decreases at first and then plateaus at higher conversion; furthermore, the steady concentration of Ml^nY/L in the polymerization is the highest when the chain-lengthdependent diffusion-controlled termination rate constant is employed in the simulation. The rates of deactivation and chain end degradation reactions are also smaller in this case. Therefore, the fraction of dormant chains is higher throughout the reaction and consequently the portion of dead polymers decreases. Besides, molecular weight increases linearly with conversion; however, when neither gel effect nor chain-length dependency of termination rate constant is considered, the molecular weight deviates from linearity at the end of the reaction. The peak of chain length distribution shifts toward higher molecular weight too during the reaction. Finally, the molecular weight distribution broadens at higher conversion; however, the chain length distribution of polymers produced under conditions of applying chain-length-dependent diffusion-controlled termination rate constant is narrower.展开更多
基金the National Natural Science Foundation of China(NSFC)(39803250 and 30070435).
文摘Effects of temperature during grain-filling on chain length distribution and structure characteristics of 4 early-seasonindica rice cultivars were investigated under the environment-controlled conditions. The plants at flowering stage weresubjected to two temperature treatments until maturity (the mean dairy air temperature, 22 and 32C for optimum temperaturetreatment and high temperature treatment, respectively). The result showed that high temperature during grain-fillingsignificantly decreased the long B-chain content and increased the intermediate B-chain content. But the effect of hightemperature on other starch chains appeared to be cultivar-dependant. The crystalline characteristics of rice starch werealso affected by temperature during grain-filling. The intensity at 18 2q of X-ray diffraction pattern of rice samples underhigh temperature was higher than those under optimum temperature, though all rice starches performed A-crystallinetype. Moreover, the intensity at 18 2q was positive correlation with intermediate B-chain content and negative correlationwith long B-chain content.
文摘Effects of nano-particle size on hydrocarbon production rates and distributions for precipitated Fe/Cu/La catalysts in Fischer-Tropsch synthesis were investigated.Nano-structured iron catalyst was prepared by micro-emulsion method.The concept of two superimposed AndersonSchulz-Flory (ASF) distributions has been applied for the representation of the effects of reaction conditions and nano-particles size on kinetics parameters and product distributions.These results reveal that by reducing the particle size of catalyst,the break in ASF distributions was decreased.Also useful different kinetics equations for synthesis of C3 to C9 and C10 to C22 were determined by using α1 and α2 chain growth probabilities.
文摘The dependencies of hydrocarbon product distributions of alkali promoted iron catalyst in Fischer-Tropsch synthesis have been studied. The concept of two superimposed Anderson-Schulz-Flory distributions has been applied for the representation of the effects of Mg, La and Ca promoters on product distributions. The FTS performance of the catalysts was tested in a fixed bed reactor under the conditions 563 K, 1.7 MPa, H2/CO = 1 and space velocities 4.86 and 13.28 nl·h^-1·gFe^-1. The results indicate that appropriate amounts of these promoters enhance the break in ASF distributions in the order Ca 〉 Mg 〉 La because of the rising of the catalyst surface basicity.
基金financially supported by the National Natural Science Foundation of China (32071943 and 31872853)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)
文摘A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization could fulfill these multiple goals.In two-year experiments,two high yielding‘super’rice cultivars were grown with different N fertilization management regimes,including zero N input,local farmers’practice(LFP)with heavy N inputs,and optimized N fertilization(ONF).In ONF,by reducing N input,increasing planting density,and optimizing the ratio of urea application at different stages,N use efficiency and the physicochemical and textural properties of milled rice were improved at higher yield levels.Compared with LFP,yield and partial factor productivity of applied N(PFP)under ONF were increased(on average)by 1.70 and 13.06%,respectively.ONF increased starch and amylose content,and significantly decreased protein content.The contents of the short chains of A chain(degree of polymerization(DP)6-12)and B1 chain(DP 13-25)of amylopectin were significantly increased under ONF,which resulted in a decrease in the stability of rice starch crystals.ONF increased viscosity values and improved the thermodynamic properties of starch,which resulted in better eating and cooking quality of the rice.Thus,ONF could substantially compensate the negative effects caused by N fertilizer and achieve the multiple goals of higher grain quality and nitrogen use efficiency(NUE)at high yield levels.These results will be useful for applications of high quality rice production at high yield levels.
文摘An optimized and high-performance Monte Carlo simulation is developed to take thorough account of four different cases of termination in styrene ATRP. According to the simulation results, the bimolecular termination rate constant sharply drops throughout the polymerization when either chain-length dependency of termination rate constant, gel effect, or both together is applied to the simulation. In addition, as expected, the initiator is quickly decomposed at the early stages of the polymerization. The concentration of the catalyst in lower oxidation state decreases at first and then plateaus at higher conversion; furthermore, the steady concentration of Ml^nY/L in the polymerization is the highest when the chain-lengthdependent diffusion-controlled termination rate constant is employed in the simulation. The rates of deactivation and chain end degradation reactions are also smaller in this case. Therefore, the fraction of dormant chains is higher throughout the reaction and consequently the portion of dead polymers decreases. Besides, molecular weight increases linearly with conversion; however, when neither gel effect nor chain-length dependency of termination rate constant is considered, the molecular weight deviates from linearity at the end of the reaction. The peak of chain length distribution shifts toward higher molecular weight too during the reaction. Finally, the molecular weight distribution broadens at higher conversion; however, the chain length distribution of polymers produced under conditions of applying chain-length-dependent diffusion-controlled termination rate constant is narrower.