Chilling has a critical role in the growth and development of perennial plants.The chilling requirement(CR)for dormancy breaking largely depends on the species.However,global warming is expected to negatively affect c...Chilling has a critical role in the growth and development of perennial plants.The chilling requirement(CR)for dormancy breaking largely depends on the species.However,global warming is expected to negatively affect chilling accumulation and dormancy release in a wide range of perennial plants.Here,we used Chimonanthus praecox as a model to investigate the CR for dormancy breaking under natural and artificial conditions.We determined the minimum CR(570 chill units,CU)needed for chilling-induced dormancy breaking and analyzed the transcriptomes and proteomes of flowering and non-flowering flower buds(FBs,anther and ovary differentiation completed)with different CRs.The concentrations of ABA and GA3 in the FBs were also determined using HPLC.The results indicate that chilling induced an upregulation of ABA levels and significant downregulation of SHORT VEGETATIVE PHASE(SVP)and FLOWERING LOCUS T(FT)homologs at the transcript level in FBs when the accumulated CR reached 570 CU(IB570)compared to FBs in November(FB.Nov,CK)and nF16(non-flowering FBs after treatment at 16℃for−300 CU),which suggested that dormancy breaking of FBs could be regulated by the ABA-mediated SVP-FT module.Overexpression in Arabidopsis was used to confirm the function of candidate genes,and early flowering was induced in 35S::CpFT1 transgenic lines.Our data provide insight into the minimum CR(570 CU)needed for chilling-induced dormancy breaking and its underlying regulatory mechanism in C.praecox,which provides a new tool for the artificial regulation of flowering time and a rich gene resource for controlling chilling-induced blooming.展开更多
The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by u...The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.展开更多
Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was...Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.展开更多
When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We deve...When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.展开更多
The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the ...The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the results of dedicated rock breaking drilling experiments.The numerical results show that the nozzle velocity and dynamic pressure of the nozzle decrease with an increase in the jet distance,and the axial velocity of the nozzle decays regularly with an increase in the dimensionless jet distance.Moreover,the axial velocity related to the nozzle with inclination angle 20°and 30°can produce a higher hole depth,while the radial velocity of the nozzle with 60°inclination can enlarge the hole diameter.The outcomes of the CFD simulations are consistent with the actual dynamic rock breaking and pore forming process,which lends credence to the present results and indicates that they could be used as a reference for the future optimization of systems based on the multi-hole combined external rotary bit technology.展开更多
This paper firstly described the dam break in the aspects of theories and models. Break parameters prediction, the understanding of dam break mechanics, peak outflow prediction were shown as the essential for the dam ...This paper firstly described the dam break in the aspects of theories and models. Break parameters prediction, the understanding of dam break mechanics, peak outflow prediction were shown as the essential for the dam break analysis, and eventually determined the loss of the damages. Secondly, as an application example, Foster Joseph Sayers Dam break was further modeled and analyzed using USACE Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model based on available geometry data. The results show that dam break is a complicated and comprehensive process involving lots of principles. Combination of mechanics and case studies, reflection of predominant mechanisms of headcut erosion, more specific categorization of dam, prudent investigation and inference of dam break process are needed in developing a satisfactory dam break simulation model. Foster Joseph Sayers Dam break due to piping elongates the time period of high water surface level, which increases the duration of risk. However, the dam break does not increase the downstream maximum water surface elevation (Max. W.S. Elev) significantly at previous design Probable Maximum Flood (PMF). Dam break has a greater impact on the downstream location where is closer to the dam in accordance with the comparison of the hydrographs at different downstream locations. Sensitivity analysis demonstrates that the changes of dam break parameters had no much influence on the downstream Max. W.S. Elev.展开更多
In view of the problem that the breakage size is not enough to analyze the damage of the heat transfer tube of the ship nuclear power steam generator under the condition that the breakage loop cannot be isolated, this...In view of the problem that the breakage size is not enough to analyze the damage of the heat transfer tube of the ship nuclear power steam generator under the condition that the breakage loop cannot be isolated, this paper analyzes the damage safety analysis model based on the MELCOR program, Damage of heat transfer tubes at different break sizes (2 mm and 6 mm) to reactor power, primary loop pressure, regulator water level, core water level, vapor pressure, break flow, fuel element cladding breakage, etc. The influence of the breakage size on the damage effect of the heat transfer tube has improved the analysis and handling capacity of the damage of the heat transfer tube, and improved the reactor accident handling capacity under the condition of the damage of the heat transfer tube.展开更多
Plasmid DNA was irradiated or implanted by mixed particle field(CR) or lithium-ion-beam to detect strand breaks.The primary results showed that mixed particle field could induce single and double strand breaks with po...Plasmid DNA was irradiated or implanted by mixed particle field(CR) or lithium-ion-beam to detect strand breaks.The primary results showed that mixed particle field could induce single and double strand breaks with positive linear-dose-effects;most of sequence changes induced by CR were point mutant.Lithium-ion-beam could induce strand breaks also,but it was only at dose of 20Gy.展开更多
This study explores the arrivals of water pipeline break failures. The aim is to assist the facility manager in the decision making process. Based on characteristics of the data set ranging from 2011 to 2014, two step...This study explores the arrivals of water pipeline break failures. The aim is to assist the facility manager in the decision making process. Based on characteristics of the data set ranging from 2011 to 2014, two steps of analysis were presented in the paper. This first step is the analysis of partially complete data set (2011 data). The 2-sample KS test is adopted to check the similarity between this data set and the entire data set with no underlying distribution implied. In order to conduct the reliability analysis, the Weibull distribution is adopted to evaluate the data. For annual data set, the 2-parameter Weibull distribution fits data sets pretty well. The shape parameters are a little greater than 1, indicating a slightly increasing arrival rate of such failures. For the entire data set, the 3-parameter Weibull tends to fit the data better than the 2-parameter Weibull. The shape parameter is well above 1, indicating an increasing arrival rate of the failures. To eliminate the impact of missing points for the 2011 data set, data from 2012 to 2014 were also considered as a new set, the Weibull distribution generated a decent fitting. The shape parameter is a little greater than 1. Therefore, there is a slightly increasing arrival rate of those pipeline failures. Results from this study provide decision makers valuable information in terms of whether additional efforts shall be made to enhance the system’s performance in order to reduce the failure rate.展开更多
The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding and vibrating- rocking motions. The models of vibrating motion and vibrating-sliding motion have been pro...The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding and vibrating- rocking motions. The models of vibrating motion and vibrating-sliding motion have been proposed in an early paper. In this paper, a model of vibrating- rocking motion of caisson breakwaters under breaking wave impact is presented, which can be used to simulate the histories of vibrating-rocking motion of caisson breakwaters. The effect of rocking motion on the displacement, rotation, sliding force and overturning moment of breakwaters is investigated, In case the overturning moment exceeds the stability moment of a caisson, the caisson may only rock. The caisson overturns only in case the rocking angle exceeds the critical angle, It is shown that the sliding force and overturning moment of breakwaters can be reduced effectively due to the rocking motion, It is proposed that some rocking motion should be allowed in breakwater design.展开更多
This paper is concerned with the numerical prediction of the burst pressure of a radial truck tire. Even though relatively rare, the tire fracture or failure brings up a big accident. Especially, the tire burst or rup...This paper is concerned with the numerical prediction of the burst pressure of a radial truck tire. Even though relatively rare, the tire fracture or failure brings up a big accident. Especially, the tire burst or rupture is a rapid loss of inflation pressure of a truck and bus tire leading to an explosion. The tire burst pressure, under this extreme loading condition, can be predicted by identifying the pressure at which the cord breaking force of the composite materials is attained. Recently, the use of finite element analysis in tire optimal design has become widely popular. In order to determine the burst pressure of a radial truck tire, an axisymmetric finite element model has been developed using a commercial finite element code with rebar element. The numerical result shows that the bead wire among the various layers modeled the rebar element breaks off first in the radial truck tire. The finite element modeling with the rebar element on the bead wire of a radial truck tire is able to well predict the tire burst pressure identifying the pressure at which the breaking force of steel bead wires is reached. The model predictions of tire burst pressure should be correlated with test data, in which case the tire is hydro-tested to destruction. The effect of the design change with the different bead structure on the tire burst pressure is discussed.展开更多
We study two-lane totally asymmetric simple exclusion processes(TASEPs)with an intersection.Monte Carlo simulations show that only symmetric phases exist in the system.To verify the existence of asymmetric phases,we c...We study two-lane totally asymmetric simple exclusion processes(TASEPs)with an intersection.Monte Carlo simulations show that only symmetric phases exist in the system.To verify the existence of asymmetric phases,we carry out a cluster mean-field analysis.Analytical results show that the densities of the two upstream segments of the intersection site are always equal,which indicates that the system is not in asymmetric phases.It demonstrates that the spontaneous symmetry breaking does not exist in the system.The density profiles and the boundaries of the symmetric phases are also investigated.We find that the cluster mean-field analysis shows better agreement with simulations than the simple mean-field analysis where the correlation of sites is ignored.展开更多
Quantitative trait loci (QTL) controlling seed dormancy in rice were identified usingrecombinant inbred lines (RILs) population derived from the cross between a japonicavariety Kinmaze and an indica variety DV85. Seed...Quantitative trait loci (QTL) controlling seed dormancy in rice were identified usingrecombinant inbred lines (RILs) population derived from the cross between a japonicavariety Kinmaze and an indica variety DV85. Seeds of two parental cultivars and each RILwere harvested in 35d after heading. The germination percentage of these seeds at 30℃for 7 days were measured as the degree of seed dormancy. QTL analysis was performed withWindows QTL Cartographer 1.13a program by composite interval mapping. A total of four QTLfor seed dormancy were detected on chromosome 2 (two regions), 5 and 11, respectively.Phenotypic variation explained by each QTL ranged from 8.37 to 17.40%. Responses of suchloci to a dormancy-breaking treatment with dry heat were further detected. The resultsshowed that two alleles of qDOR-2-1 and qDOR-5 from DV85 as well as the allele of qDOR-11 from Kinmaze increased the seed dormancy, which seemed to be easily broken by dry heattreatment. Such loci of seed dormancy may be applied to rice genetic improvement. Theallele of qDOR-2-2 from DV85 increased the seed dormancy, which could not be broken bydry heat treatment.展开更多
Bow wave breaking is a common phenomenon during ship navigation,especially at a high speed,involving complex physical mechanism such as interface mixing,air entrainment,and jet splashing.This study uses the delayed de...Bow wave breaking is a common phenomenon during ship navigation,especially at a high speed,involving complex physical mechanism such as interface mixing,air entrainment,and jet splashing.This study uses the delayed detached eddy simulation(DDES)turbulence model on the OpenFOAM platform to simulate flow around a KRISO Container Ship(KCS)model for a Froude number of 0.35,examining trim angles of 0°,0.5°,1°.This paper analyzes the statistical and power spectral density(PSD)characteristics of bow wave heights.The analysis shows root mean square(rms)and mean difference between top and bottom views indicate wave breaking.As the trim angle increases,peaks of rms in the bottom view become much higher than that in the top view,reaching 38%at 1°.PSD analysis reveals that resistance and wave height periods differ by no more than 5%,with small-scale structures like jetting and splashing causing non-dominant periodic and high-frequency wave height variations.展开更多
The precision modeling of dam break floods can lead to formulation of proper emergency action plan to minimize flood impacts within the economic lifetime of the assets.Application of GIS techniques in integration with...The precision modeling of dam break floods can lead to formulation of proper emergency action plan to minimize flood impacts within the economic lifetime of the assets.Application of GIS techniques in integration with hydrological modeling for mapping of the flood inundated areas can play a momentous role in further minimizing the risk and likely damages.In the present study,dam break analysis using DAMBRK model was performed under various likely scenarios.Probable Maximum Flood (PMF)calculated for a return period of 1000 years using deterministic approach was adopted for dam break analysis of the proposed dam under various combinations of breach dimensions.The available downstream river cross-sections data sets were used as input in the model to generate the downstream flood profile.Dam break flow depths generated by the DAMBRK model under various combinations of structural failure are subsequently plotted on Digital Elevation Model(DEM)of the downstream of dam site to map the likely affected area.The simulation results reveals that in one particular case the flood without dam may be more intense if a rainfall of significant intensity takes place.展开更多
In the paper, a general framework for large scale modeling of macroeconomic and financial time series is introduced. The proposed approach is characterized by simplicity of implementation, performing well independentl...In the paper, a general framework for large scale modeling of macroeconomic and financial time series is introduced. The proposed approach is characterized by simplicity of implementation, performing well independently of persistence and heteroskedasticity properties, accounting for common deterministic and stochastic factors. Monte Carlo results strongly support the proposed methodology, validating its use also for relatively small cross-sectional and temporal samples.展开更多
In October and November of 2018,the upper reach of the Yangtze River was blocked twice by landslide dams.A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once...In October and November of 2018,the upper reach of the Yangtze River was blocked twice by landslide dams.A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once it fails,imposing great risk to the downstream communities.Considering the chain of large dams and densely populated cities along the river,there is an urgent need to improve the system resilience of the Yangtze River to the landslide dam break hazard.This study presents a basin-scale emergency risk management framework based on an overtopping-erosion based dam failure model and a 1-D flood routing analysis model.Basin-wide inundation and detailed flood risk analyses are carried out considering engineering risk mitigation measures,which will facilitate the decision-making on future emergency risk mitigation plans.The proposed framework is applied to the landslide dam on the Yangtze River in November 2018.Results show that excavating a 15 m-depth diversion channel could effectively mitigate the flood risk of downstream areas.Further mitigation measures,including evacuation,removal of obstacles in the river,and preparation of certain intercept capacity in downstream reservoirs,are suggested based on the hazard chain risk analysis.The mitigation results in the case prove the effectiveness of the proposed framework.The incorporation of open-access global databases enables the application of the framework to any large river basin worldwide.展开更多
基金supported by grants from the Natural Science Foundation of Chongqing(No.cstc2020jcyj-msxmX1014)Fundamental Research Funds for the Central Universities(No.XDJK2020B059)+1 种基金National Natural Science Foundation of China(Grant No.31971711)Chongqing education committee project(CY200210,S202010635221).
文摘Chilling has a critical role in the growth and development of perennial plants.The chilling requirement(CR)for dormancy breaking largely depends on the species.However,global warming is expected to negatively affect chilling accumulation and dormancy release in a wide range of perennial plants.Here,we used Chimonanthus praecox as a model to investigate the CR for dormancy breaking under natural and artificial conditions.We determined the minimum CR(570 chill units,CU)needed for chilling-induced dormancy breaking and analyzed the transcriptomes and proteomes of flowering and non-flowering flower buds(FBs,anther and ovary differentiation completed)with different CRs.The concentrations of ABA and GA3 in the FBs were also determined using HPLC.The results indicate that chilling induced an upregulation of ABA levels and significant downregulation of SHORT VEGETATIVE PHASE(SVP)and FLOWERING LOCUS T(FT)homologs at the transcript level in FBs when the accumulated CR reached 570 CU(IB570)compared to FBs in November(FB.Nov,CK)and nF16(non-flowering FBs after treatment at 16℃for−300 CU),which suggested that dormancy breaking of FBs could be regulated by the ABA-mediated SVP-FT module.Overexpression in Arabidopsis was used to confirm the function of candidate genes,and early flowering was induced in 35S::CpFT1 transgenic lines.Our data provide insight into the minimum CR(570 CU)needed for chilling-induced dormancy breaking and its underlying regulatory mechanism in C.praecox,which provides a new tool for the artificial regulation of flowering time and a rich gene resource for controlling chilling-induced blooming.
基金Project(06JJ20094) supported by the Natural Science Foundation of Hunan Province, China
文摘The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
基金Supported by the National Basic Research Program of China(973 Program)(2005CB221504)the National Natural Science Foundation of China(50534080)the National Science and Technology Supporting Program of China(the 11th Five-Year Program)(2006BAK03B03)
文摘Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.
基金supported by the State Key Laboratory Open Fund(No.HKLBEF202004)the Natural Science Foundation of Jiangsu Province(No.BK20201313)+2 种基金the Key Program of National Natural Science Foundation of China(No.51934007)the Major Scientific and Technological Innovation Program in Shandong Province(No.2019JZZY020505)the National Key Research and Development Program of China(No.2022YFC3004700)。
文摘When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.
基金the Science and Technology Innovation and Entrepreneurship Fund of China Coal Technology Engineering Group(2019-TD-QN038,2019-TDQN017)Enterprise Independent Innovation Guidance Project(2018ZDXM05,2019YBXM30).
文摘The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the results of dedicated rock breaking drilling experiments.The numerical results show that the nozzle velocity and dynamic pressure of the nozzle decrease with an increase in the jet distance,and the axial velocity of the nozzle decays regularly with an increase in the dimensionless jet distance.Moreover,the axial velocity related to the nozzle with inclination angle 20°and 30°can produce a higher hole depth,while the radial velocity of the nozzle with 60°inclination can enlarge the hole diameter.The outcomes of the CFD simulations are consistent with the actual dynamic rock breaking and pore forming process,which lends credence to the present results and indicates that they could be used as a reference for the future optimization of systems based on the multi-hole combined external rotary bit technology.
文摘This paper firstly described the dam break in the aspects of theories and models. Break parameters prediction, the understanding of dam break mechanics, peak outflow prediction were shown as the essential for the dam break analysis, and eventually determined the loss of the damages. Secondly, as an application example, Foster Joseph Sayers Dam break was further modeled and analyzed using USACE Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model based on available geometry data. The results show that dam break is a complicated and comprehensive process involving lots of principles. Combination of mechanics and case studies, reflection of predominant mechanisms of headcut erosion, more specific categorization of dam, prudent investigation and inference of dam break process are needed in developing a satisfactory dam break simulation model. Foster Joseph Sayers Dam break due to piping elongates the time period of high water surface level, which increases the duration of risk. However, the dam break does not increase the downstream maximum water surface elevation (Max. W.S. Elev) significantly at previous design Probable Maximum Flood (PMF). Dam break has a greater impact on the downstream location where is closer to the dam in accordance with the comparison of the hydrographs at different downstream locations. Sensitivity analysis demonstrates that the changes of dam break parameters had no much influence on the downstream Max. W.S. Elev.
文摘In view of the problem that the breakage size is not enough to analyze the damage of the heat transfer tube of the ship nuclear power steam generator under the condition that the breakage loop cannot be isolated, this paper analyzes the damage safety analysis model based on the MELCOR program, Damage of heat transfer tubes at different break sizes (2 mm and 6 mm) to reactor power, primary loop pressure, regulator water level, core water level, vapor pressure, break flow, fuel element cladding breakage, etc. The influence of the breakage size on the damage effect of the heat transfer tube has improved the analysis and handling capacity of the damage of the heat transfer tube, and improved the reactor accident handling capacity under the condition of the damage of the heat transfer tube.
文摘Plasmid DNA was irradiated or implanted by mixed particle field(CR) or lithium-ion-beam to detect strand breaks.The primary results showed that mixed particle field could induce single and double strand breaks with positive linear-dose-effects;most of sequence changes induced by CR were point mutant.Lithium-ion-beam could induce strand breaks also,but it was only at dose of 20Gy.
文摘This study explores the arrivals of water pipeline break failures. The aim is to assist the facility manager in the decision making process. Based on characteristics of the data set ranging from 2011 to 2014, two steps of analysis were presented in the paper. This first step is the analysis of partially complete data set (2011 data). The 2-sample KS test is adopted to check the similarity between this data set and the entire data set with no underlying distribution implied. In order to conduct the reliability analysis, the Weibull distribution is adopted to evaluate the data. For annual data set, the 2-parameter Weibull distribution fits data sets pretty well. The shape parameters are a little greater than 1, indicating a slightly increasing arrival rate of such failures. For the entire data set, the 3-parameter Weibull tends to fit the data better than the 2-parameter Weibull. The shape parameter is well above 1, indicating an increasing arrival rate of the failures. To eliminate the impact of missing points for the 2011 data set, data from 2012 to 2014 were also considered as a new set, the Weibull distribution generated a decent fitting. The shape parameter is a little greater than 1. Therefore, there is a slightly increasing arrival rate of those pipeline failures. Results from this study provide decision makers valuable information in terms of whether additional efforts shall be made to enhance the system’s performance in order to reduce the failure rate.
基金Extended work of the project"Dynamic Responses of Composite Breakwaters to Breaking Wave Impact"financially supported by the Ministry of Transport Exchange Fund,Japan
文摘The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding and vibrating- rocking motions. The models of vibrating motion and vibrating-sliding motion have been proposed in an early paper. In this paper, a model of vibrating- rocking motion of caisson breakwaters under breaking wave impact is presented, which can be used to simulate the histories of vibrating-rocking motion of caisson breakwaters. The effect of rocking motion on the displacement, rotation, sliding force and overturning moment of breakwaters is investigated, In case the overturning moment exceeds the stability moment of a caisson, the caisson may only rock. The caisson overturns only in case the rocking angle exceeds the critical angle, It is shown that the sliding force and overturning moment of breakwaters can be reduced effectively due to the rocking motion, It is proposed that some rocking motion should be allowed in breakwater design.
文摘This paper is concerned with the numerical prediction of the burst pressure of a radial truck tire. Even though relatively rare, the tire fracture or failure brings up a big accident. Especially, the tire burst or rupture is a rapid loss of inflation pressure of a truck and bus tire leading to an explosion. The tire burst pressure, under this extreme loading condition, can be predicted by identifying the pressure at which the cord breaking force of the composite materials is attained. Recently, the use of finite element analysis in tire optimal design has become widely popular. In order to determine the burst pressure of a radial truck tire, an axisymmetric finite element model has been developed using a commercial finite element code with rebar element. The numerical result shows that the bead wire among the various layers modeled the rebar element breaks off first in the radial truck tire. The finite element modeling with the rebar element on the bead wire of a radial truck tire is able to well predict the tire burst pressure identifying the pressure at which the breaking force of steel bead wires is reached. The model predictions of tire burst pressure should be correlated with test data, in which case the tire is hydro-tested to destruction. The effect of the design change with the different bead structure on the tire burst pressure is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11802003).
文摘We study two-lane totally asymmetric simple exclusion processes(TASEPs)with an intersection.Monte Carlo simulations show that only symmetric phases exist in the system.To verify the existence of asymmetric phases,we carry out a cluster mean-field analysis.Analytical results show that the densities of the two upstream segments of the intersection site are always equal,which indicates that the system is not in asymmetric phases.It demonstrates that the spontaneous symmetry breaking does not exist in the system.The density profiles and the boundaries of the symmetric phases are also investigated.We find that the cluster mean-field analysis shows better agreement with simulations than the simple mean-field analysis where the correlation of sites is ignored.
基金supported by the National Nature Science Foundation of Jiangsu Province,China(BK2003415)Jiangsu Province Tackle Key Problem Foundation(BE2001305).
文摘Quantitative trait loci (QTL) controlling seed dormancy in rice were identified usingrecombinant inbred lines (RILs) population derived from the cross between a japonicavariety Kinmaze and an indica variety DV85. Seeds of two parental cultivars and each RILwere harvested in 35d after heading. The germination percentage of these seeds at 30℃for 7 days were measured as the degree of seed dormancy. QTL analysis was performed withWindows QTL Cartographer 1.13a program by composite interval mapping. A total of four QTLfor seed dormancy were detected on chromosome 2 (two regions), 5 and 11, respectively.Phenotypic variation explained by each QTL ranged from 8.37 to 17.40%. Responses of suchloci to a dormancy-breaking treatment with dry heat were further detected. The resultsshowed that two alleles of qDOR-2-1 and qDOR-5 from DV85 as well as the allele of qDOR-11 from Kinmaze increased the seed dormancy, which seemed to be easily broken by dry heattreatment. Such loci of seed dormancy may be applied to rice genetic improvement. Theallele of qDOR-2-2 from DV85 increased the seed dormancy, which could not be broken bydry heat treatment.
基金Project supported by the National Natural Science Foundation of China(Grant No.52131102)supported by the Research and Application Demonstration Project of Key Technologies for Safeguarding of Container vessels in Ningbo Zhoushan Port Based on Intelligent Navigation(Grant No.ZJHG-FW-2024-27).
文摘Bow wave breaking is a common phenomenon during ship navigation,especially at a high speed,involving complex physical mechanism such as interface mixing,air entrainment,and jet splashing.This study uses the delayed detached eddy simulation(DDES)turbulence model on the OpenFOAM platform to simulate flow around a KRISO Container Ship(KCS)model for a Froude number of 0.35,examining trim angles of 0°,0.5°,1°.This paper analyzes the statistical and power spectral density(PSD)characteristics of bow wave heights.The analysis shows root mean square(rms)and mean difference between top and bottom views indicate wave breaking.As the trim angle increases,peaks of rms in the bottom view become much higher than that in the top view,reaching 38%at 1°.PSD analysis reveals that resistance and wave height periods differ by no more than 5%,with small-scale structures like jetting and splashing causing non-dominant periodic and high-frequency wave height variations.
文摘The precision modeling of dam break floods can lead to formulation of proper emergency action plan to minimize flood impacts within the economic lifetime of the assets.Application of GIS techniques in integration with hydrological modeling for mapping of the flood inundated areas can play a momentous role in further minimizing the risk and likely damages.In the present study,dam break analysis using DAMBRK model was performed under various likely scenarios.Probable Maximum Flood (PMF)calculated for a return period of 1000 years using deterministic approach was adopted for dam break analysis of the proposed dam under various combinations of breach dimensions.The available downstream river cross-sections data sets were used as input in the model to generate the downstream flood profile.Dam break flow depths generated by the DAMBRK model under various combinations of structural failure are subsequently plotted on Digital Elevation Model(DEM)of the downstream of dam site to map the likely affected area.The simulation results reveals that in one particular case the flood without dam may be more intense if a rainfall of significant intensity takes place.
文摘In the paper, a general framework for large scale modeling of macroeconomic and financial time series is introduced. The proposed approach is characterized by simplicity of implementation, performing well independently of persistence and heteroskedasticity properties, accounting for common deterministic and stochastic factors. Monte Carlo results strongly support the proposed methodology, validating its use also for relatively small cross-sectional and temporal samples.
基金financial support from the NSFC/RGC Joint Research Scheme(N_HKUST620/20 and 42061160480)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083).
文摘In October and November of 2018,the upper reach of the Yangtze River was blocked twice by landslide dams.A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once it fails,imposing great risk to the downstream communities.Considering the chain of large dams and densely populated cities along the river,there is an urgent need to improve the system resilience of the Yangtze River to the landslide dam break hazard.This study presents a basin-scale emergency risk management framework based on an overtopping-erosion based dam failure model and a 1-D flood routing analysis model.Basin-wide inundation and detailed flood risk analyses are carried out considering engineering risk mitigation measures,which will facilitate the decision-making on future emergency risk mitigation plans.The proposed framework is applied to the landslide dam on the Yangtze River in November 2018.Results show that excavating a 15 m-depth diversion channel could effectively mitigate the flood risk of downstream areas.Further mitigation measures,including evacuation,removal of obstacles in the river,and preparation of certain intercept capacity in downstream reservoirs,are suggested based on the hazard chain risk analysis.The mitigation results in the case prove the effectiveness of the proposed framework.The incorporation of open-access global databases enables the application of the framework to any large river basin worldwide.