期刊文献+
共找到289篇文章
< 1 2 15 >
每页显示 20 50 100
Enhanced Cuckoo Search Optimization Technique for Skin Cancer Diagnosis Application
1
作者 S.Ayshwarya Lakshmi K.Anandavelu 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3403-3413,共11页
Skin cancer segmentation is a critical task in a clinical decision support system for skin cancer detection.The suggested enhanced cuckoo search based optimization model will be used to evaluate several metrics in the... Skin cancer segmentation is a critical task in a clinical decision support system for skin cancer detection.The suggested enhanced cuckoo search based optimization model will be used to evaluate several metrics in the skin cancer pic-ture segmentation process.Because time and resources are always limited,the proposed enhanced cuckoo search optimization algorithm is one of the most effec-tive strategies for dealing with global optimization difficulties.One of the most significant requirements is to design optimal solutions to optimize their use.There is no particular technique that can answer all optimization issues.The proposed enhanced cuckoo search optimization method indicates a constructive precision for skin cancer over with all image segmentation in computerized diagnosis.The accuracy of the proposed enhanced cuckoo search based optimization for melanoma has increased with a 23%to 29%improvement than other optimization algorithm.The total sensitivity and specificity attained in the proposed system are 99.56%and 99.73%respectively.The proposed method outperforms by offering accuracy of 99.26%in comparisons to other conventional methods.The proposed enhanced optimization technique achieved 98.75%,98.96%for Dice and Jaccard coefficient.The model trained using the suggested measure outperforms those trained using the conventional method in the segmentation of skin cancer picture data. 展开更多
关键词 Cukoo search optimization technique fitness function CANCER
下载PDF
GLOBAL CONVERGENCE RESULTS OF A THREE TERM MEMORY GRADIENT METHOD WITH A NON-MONOTONE LINE SEARCH TECHNIQUE 被引量:12
2
作者 孙清滢 《Acta Mathematica Scientia》 SCIE CSCD 2005年第1期170-178,共9页
In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb... In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient. 展开更多
关键词 Non-linear programming three term memory gradient method convergence non-monotone line search technique numerical experiment
下载PDF
A New Genetic Algorithm Based on Niche Technique and Local Search Method 被引量:1
3
作者 Jinwu Xu, Jiwen Liu Mechanical Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第1期63-68,共6页
The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new generic algorithm based on niche technique and local search method is presented u... The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new generic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc. 展开更多
关键词 genetic algorithm (GA) niche technique local search method
下载PDF
Optimal Allocation of a Hybrid Wind Energy-Fuel Cell System Using Different Optimization Techniques in the Egyptian Distribution Network
4
作者 Adel A. Abou El-Ela Sohir M. Allam Nermine K. Shehata 《Energy and Power Engineering》 2021年第1期17-40,共24页
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio... This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City. 展开更多
关键词 Wind Energy System Proton Exchange Membrane Fuel Cell Binary Crow search Algorithm Discrete Jaya Algorithm Binary Particle Swarm Optimization technique
下载PDF
Li2MoO4 Crystals Grown by Low-Thermal-Gradient Czochralski Technique
5
作者 Veronika Grigorieva Vladimir Shlegel +10 位作者 Tatyana Bekker Nina Ivannikova Andrea Giuliani Pierre de Marcillac Stefanos Mamieros Valentina Novati Emiliano Olivieri Denys Poda Claudia Nones Anastasiia Zolotarova Fedor Danevich 《材料科学与工程(中英文B版)》 2017年第2期63-70,共8页
下载PDF
地震灾害现场搜救方法与策略研究——以中国救援队土耳其地震现场救援为例
6
作者 曲旻皓 李立 +2 位作者 韩春燕 谢峥屿 赵晓霞 《中国应急救援》 2024年第4期56-60,共5页
总结中国救援队在土耳其地震现场开展的多场救援行动中常用的搜救技术遇到的困难和挑战,中国救援队针对所遇到的困难和问题采取的搜索与营救技术和方法等案列,开展了案列分析,分析了各项搜救技术及其综合运用的优缺点,并对救援队在搜救... 总结中国救援队在土耳其地震现场开展的多场救援行动中常用的搜救技术遇到的困难和挑战,中国救援队针对所遇到的困难和问题采取的搜索与营救技术和方法等案列,开展了案列分析,分析了各项搜救技术及其综合运用的优缺点,并对救援队在搜救技术方面提出了进一步的改进建议。 展开更多
关键词 中国救援队 土耳其地震 搜救技术
下载PDF
基于预训练模型的漏洞信息检索系统研究 被引量:1
7
作者 刘烨 杨良斌 《情报杂志》 CSSCI 北大核心 2024年第8期84-91,共8页
[研究目的]威胁情报中漏洞信息是指有关网络、系统、应用程序或供应链中存在的漏洞的信息。目前搜索引擎在漏洞信息检索上存在短板,利用预训练模型来构建漏洞检索系统可以提高检索效率。[研究方法]以公开的漏洞信息作为数据来源,构建了... [研究目的]威胁情报中漏洞信息是指有关网络、系统、应用程序或供应链中存在的漏洞的信息。目前搜索引擎在漏洞信息检索上存在短板,利用预训练模型来构建漏洞检索系统可以提高检索效率。[研究方法]以公开的漏洞信息作为数据来源,构建了一个问答数据集,对Tiny Bert进行增量预训练。使用模型对于每个查询向量化,并把漏洞信息构建成faiss向量数据库,利用HNSW索引进行多通道和单通道召回检索。然后对模型进行对比学习微调生成双塔和单塔模型,利用双塔召回和单塔精排构建了一个简易的知识检索系统。[研究结论]实验结果表明,预训练模型可以显著地提升检索性能,对比学习微调的双塔模型在构建的漏洞信息测试集中TOP1召回率为92.17%。通过漏洞信息领域的检索实践,对构建威胁情报的检索系统提供了参考。 展开更多
关键词 威胁情报 预训练模型 漏洞信息 多通道搜索技术 信息检索系统
下载PDF
求解加权偏MaxSAT问题的通用子句加权方法
8
作者 郑迥之 何琨 《计算机学报》 EI CAS CSCD 北大核心 2024年第6期1341-1354,共14页
最大可满足性问题(Maximum Satisfiability Problem,MaxSAT)是著名的可满足性问题(Satisfiability Problem,SAT)的优化形式,也是一个经典的NP难组合优化问题.加权偏MaxSAT(Weighted Partial MaxSAT,WPMS)是最一般的一类MaxSAT问题,其中... 最大可满足性问题(Maximum Satisfiability Problem,MaxSAT)是著名的可满足性问题(Satisfiability Problem,SAT)的优化形式,也是一个经典的NP难组合优化问题.加权偏MaxSAT(Weighted Partial MaxSAT,WPMS)是最一般的一类MaxSAT问题,其中包含了必须要满足的硬子句,对应了优化问题中的约束条件,以及带权重的软子句,对应了优化问题中的优化目标.WPMS旨在满足所有硬子句的同时最大化被满足软子句的权重之和.工业场景中和学术领域中的许多优化问题都能够转化成WPMS问题进行求解,因此WPMS具有广泛的应用领域和重要的研究意义.局部搜索方法是求解WPMS问题的一种著名且被广泛研究的非完备方法.子句加权技术是WPMS局部搜索算法中常用的一种有效且关键的技术,通过为子句赋予动态权重并在搜索过程中更新它们以引导搜索方向,帮助算法逃离局部最优.最先进的WPMS局部搜索算法都提出或采用了有效的子句加权技术,以帮助它们在不同的解空间中搜索.然而,现有的子句加权技术仅根据当前局部最优解更新子句动态权重,而未考虑任何历史信息,可能导致子句加权的视野局限,对搜索方向的引导不够准确.为了解决这一问题,提出了一种新的子句加权技术,称为Hist-Weighting(Clause Weighting with Historical Information),同时考虑了当前及历史信息来更新子句的动态权重,以改进子句加权机制和局部搜索算法的搜索精度和效率.具体而言,Hist-Weighting为那些同时被当前和历史局部最优解所不满足的子句赋予更大的动态权重增量,使算法更倾向于满足那些久未被满足且难以被满足的子句,提高子句加权的准确度.此外,在Hist-Weighting中,子句动态权重的增量能够根据子句中的变元得分自适应地调整,使子句加权更具有灵活性.Hist-Weighting还为子句动态权重的增量设置了上下限,保证了子句加权的稳定性.为了评估所提出的Hist-Weighting子句加权技术的性能,将其应用于三种最先进的WPMS局部搜索算法,即BandMaxSAT、SATLike3.0和CCEHC.在近五届 MaxSAT国际算法竞赛 MaxSAT Evaluation非完备组的所有WPMS算例上的实验结果表明,应用Hist-Weighting技术的改进算法相比于原算法在获胜算例数上能够提升约10%至60%,体现了所提出的Hist-Weighting子句加权技术在求解WPMS问题时的有效性.此外,通过将应用了 Hist-Weighting的改进局部搜索算法与其变体算法对比以进行消融实验,表明了 Hist-Weighting中限制动态权重增量上下限,以及使动态权重增量根据变元得分自适应调整的机制的有效性. 展开更多
关键词 最大可满足性问题 局部搜索 子句加权技术 历史信息
下载PDF
因特网多元搜索引擎Search X2000的研究 被引量:3
9
作者 李村合 《情报学报》 CSSCI 北大核心 2002年第4期433-436,共4页
介绍了Internet网络多元搜索引擎SearchX2 0 0 0的基本情况 ,研究了该搜索引擎的使用方法与技巧 ,同时客观地评价了它的优劣得失 。
关键词 因特网 搜索引擎 多元搜索引擎 SrarchX2000 信息检索技术
下载PDF
Compressive strength prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient boosting technique 被引量:1
10
作者 Enming LI Ning ZHANG +2 位作者 Bin XI Jian ZHOU Xiaofeng GAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第9期1310-1325,共16页
Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is nece... Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is necessary.Improving the sustainability and greenness of concrete is the focus of this research.In this regard,899 data points were collected from existing studies where cement,slag,fly ash,superplasticizer,coarse aggregate,and fine aggregate were considered potential influential factors.The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult.Instead of the traditional compressive strength test,this study combines five novel metaheuristic algorithms with extreme gradient boosting(XGB)to predict the compressive strength of green concrete based on fly ash and blast furnace slag.The intelligent prediction models were assessed using the root mean square error(RMSE),coefficient of determination(R^(2)),mean absolute error(MAE),and variance accounted for(VAF).The results indicated that the squirrel search algorithm-extreme gradient boosting(SSA-XGB)yielded the best overall prediction performance with R^(2) values of 0.9930 and 0.9576,VAF values of 99.30 and 95.79,MAE values of 0.52 and 2.50,RMSE of 1.34 and 3.31 for the training and testing sets,respectively.The remaining five prediction methods yield promising results.Therefore,the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete.Finally,the developed SSA-XGB considered the effects of all the input factors on the compressive strength.The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy. 展开更多
关键词 sustainable concrete fly ash slay extreme gradient boosting technique squirrel search algorithm parametric analysis
原文传递
基于SMOTE-SSA-CNN的开关柜故障诊断方法
11
作者 张玮 《电气传动》 2024年第10期83-89,共7页
开关柜多源监测数据包含丰富的设备运行状态信息,对其进行分析可实现开关柜故障诊断。提出一种基于SMOTE-SSA-CNN的开关柜故障诊断方法。首先,以开关柜电压、电流和温湿度等监测数据为基础,采用合成少数类样本过采样技术(SMOTE)算法对... 开关柜多源监测数据包含丰富的设备运行状态信息,对其进行分析可实现开关柜故障诊断。提出一种基于SMOTE-SSA-CNN的开关柜故障诊断方法。首先,以开关柜电压、电流和温湿度等监测数据为基础,采用合成少数类样本过采样技术(SMOTE)算法对原始数据集进行样本扩充,解决原始数据集中正负样本严重失衡的问题;然后引入麻雀搜索算法(SSA)对卷积神经网络(CNN)的卷积核大小与数量、全连接层神经元数量、学习率等超参数进行优化,提高模型故障诊断结果的准确率;最后,通过算例分析对建立的SMOTE-SSA-CNN模型性能进行评估,验证了所提方法对开关柜故障诊断的有效性,且与传统故障诊断方法相比,所提方法的收敛性较好,精度较高。 展开更多
关键词 开关柜 多源监测数据 合成少数类样本过采样技术算法 麻雀搜索算法 卷积神经网络
下载PDF
Optimal Coordinated Search for a Discrete Random Walker
12
作者 Abd-Elmoneim A. M. Teamah Asmaa B. Elbery 《Applied Mathematics》 2019年第5期349-362,共14页
This paper presents the search technique for a lost target. A lost target is random walker on one of two intersected real lines, and the purpose is to detect the target as fast as possible. We have four searchers star... This paper presents the search technique for a lost target. A lost target is random walker on one of two intersected real lines, and the purpose is to detect the target as fast as possible. We have four searchers start from the point of intersection, they follow the so called Quasi-Coordinated search plan. The expected value of the first meeting time between one of the searchers and the target is investigated, also we show the existence of the optimal search strategy which minimizes this first meeting time. 展开更多
关键词 Random WALK COORDINATE search technique LOST Targets EXPECTED Value OPTIMAL search
下载PDF
A Multilevel Tabu Search for the Maximum Satisfiability Problem
13
作者 Noureddine Bouhmala Sirar Salih 《International Journal of Communications, Network and System Sciences》 2012年第10期661-670,共10页
The maximum satisfiability problem (MAX-SAT) refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weight of satisfied clauses) in a Boolean Formula. Most loca... The maximum satisfiability problem (MAX-SAT) refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weight of satisfied clauses) in a Boolean Formula. Most local search algorithms including tabu search rely on the 1-flip neighbourhood structure. In this work, we introduce a tabu search algorithm that makes use of the multilevel paradigm for solving MAX-SAT problems. The multilevel paradigm refers to the process of dividing large and difficult problems into smaller ones, which are hopefully much easier to solve, and then work backward towards the solution of the original problem, using a solution from a previous level as a starting solution at the next level. This process aims at looking at the search as a multilevel process operating in a coarse-to-fine strategy evolving from k-flip neighbourhood to 1-flip neighbourhood-based structure. Experimental results comparing the multilevel tabu search against its single level variant are presented. 展开更多
关键词 MAXIMUM SATISFIABILITY PROBLEM Tabu search MULTILEVEL techniqueS
下载PDF
Towards More Efficient Image Web Search
14
作者 Mohammed Abdel Razek 《Intelligent Information Management》 2013年第6期196-203,共8页
With the flood of information on the Web, it has become increasingly necessary for users to utilize automated tools in order to find, extract, filter, and evaluate the desired information and knowledge discovery. In t... With the flood of information on the Web, it has become increasingly necessary for users to utilize automated tools in order to find, extract, filter, and evaluate the desired information and knowledge discovery. In this research, we will present a preliminary discussion about using the dominant meaning technique to improve Google Image Web search engine. Google search engine analyzes the text on the page adjacent to the image, the image caption and dozens of other factors to determine the image content. To improve the results, we looked for building a dominant meaning classification model. This paper investigated the influence of using this model to retrieve more efficient images, through sequential procedures to formulate a suitable query. In order to build this model, the specific dataset related to an application domain was collected;K-means algorithm was used to cluster the dataset into K-clusters, and the dominant meaning technique is used to construct a hierarchy model of these clusters. This hierarchy model is used to reformulate a new query. We perform some experiments on Google and validate the effectiveness of the proposed approach. The proposed approach is improved for in precision, recall and F1-measure by 57%, 70%, and 61% respectively. 展开更多
关键词 WEB Mining IMAGE RETRIEVAL DOMINANT MEANING technique K-MEANS Algorithm WEB search
下载PDF
Fortified Financial Forecasting Models Based on Non-Linear Searching Approaches
15
作者 Mohammad R. Hamidizadeh Mohammad E. Fadaeinejad 《Journal of Modern Accounting and Auditing》 2012年第2期232-240,共9页
The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i... The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i.e., secular trends, cyclical variations, seasonal effects, and stochastic variations), they believe the best forecasting model is the one which realistically considers the underlying causal factors in a situational relationship and therefore has the best "track records" in generating data. Paper's models can be adjusted for variations in related a time series which processes a great deal of randomness, to improve the accuracy of the financial forecasts. Because of Na'fve forecasting models are based on an extrapolation of past values for future. These models may be adjusted for seasonal, secular, and cyclical trends in related data. When a data series processes a great deal of randomness, smoothing techniques, such as moving averages and exponential smoothing, may improve the accuracy of the financial forecasts. But neither Na'fve models nor smoothing techniques are capable of identifying major future changes in the direction of a situational data series. Hereby, nonlinear techniques, like direct and sequential search approaches, overcome those shortcomings can be used. The methodology which we have used is based on inferential analysis. To build the models to identify the major future changes in the direction of a situational data series, a comparative model building is applied. Hereby, the paper suggests using some of the nonlinear techniques, like direct and sequential search approaches, to reduce the technical shortcomings. The final result of the paper is to manipulate, to prepare, and to integrate heuristic non-linear searching methods to serve calculating adjusted factors to produce the best forecast data. 展开更多
关键词 Naive forecasting models smoothing techniques Fibonacci and Golden section search line search bycurve fit
下载PDF
一种极值搜索的齿轮系统振动信号阶次跟踪方法 被引量:1
16
作者 徐磊 丁康 +1 位作者 何国林 王远航 《振动工程学报》 EI CSCD 北大核心 2023年第3期837-844,共8页
在变速工况下,齿轮系统的振动信号具有非平稳性,频谱特征模糊,不利于特征提取和故障诊断。阶次跟踪方法作为一种非平稳信号分析方法,将原信号从时间域转换到角度域,有助于抑制变转速导致的频率模糊现象。广泛应用的计算阶次跟踪分析方... 在变速工况下,齿轮系统的振动信号具有非平稳性,频谱特征模糊,不利于特征提取和故障诊断。阶次跟踪方法作为一种非平稳信号分析方法,将原信号从时间域转换到角度域,有助于抑制变转速导致的频率模糊现象。广泛应用的计算阶次跟踪分析方法在实现等角度重采样过程中,通过提取瞬时转速积分求取瞬时角位移,或者基于相位解调获取角度‑时间关系,受限于积分累计误差或小的转速跟踪范围。利用齿轮系统啮合振动信号峰峰值对应的等角度间隔特征,提出一种基于时域信号极值搜索的无键相阶次跟踪方法。所提方法不需要通过转速积分获取瞬时角位移,同时允许较大转速变化范围,降低了阶次分析域变换过程的误差,抗噪性能良好,使阶次谱能量集中度和特征成分辨识度得到明显提高。理论分析、仿真对比分析和试验测试结果均验证了所提方法的有效性,适用于变转速工况下的齿轮箱非平稳振动信号频谱分析和故障诊断。 展开更多
关键词 故障诊断 阶次跟踪 齿轮系统 极值搜索 角度‑时间关系
下载PDF
基于改进BP神经网络的多层土壤湿度反演 被引量:1
17
作者 刘娣 孙佳倩 余钟波 《节水灌溉》 北大核心 2023年第11期19-27,共9页
为了获取有时空连续性的表层至深层土壤湿度数据,以美国McClellanville站和青藏高原MAWORS站为研究区域,利用有限气象观测数据,基于BP神经网络(Back Propagation Neuron Network,BPNN),融合天牛须搜索算法(Beetle Antennae Search Algor... 为了获取有时空连续性的表层至深层土壤湿度数据,以美国McClellanville站和青藏高原MAWORS站为研究区域,利用有限气象观测数据,基于BP神经网络(Back Propagation Neuron Network,BPNN),融合天牛须搜索算法(Beetle Antennae Search Algorithm,BAS),构建BAS-BP模型(Beetle Antennae Search-Back Propagation Neural Networks),对表层至深层土壤湿度进行反演。结果表明:①融合优化的BAS-BP模型对各层土壤湿度的反演效果优于BP模型,两个站使用BP模型反演测试集的RMSE量值在0.016~0.191 m^(3)/m^(3)之间,MAE在0.012~0.177 m^(3)/m^(3)之间,R在0.390~0.987之间。使用BAS-BP模型得到的测试集RMSE在0.014~0.143 m^(3)/m^(3)之间,MAE在0.010~0.131 m^(3)/m^(3)之间,R在0.504~0.994之间。②BP和BAS-BP模型对各站不同深度土壤湿度的反演效果均在土层10 cm处达到最佳,RMSE和MAE均小于0.016 m^(3)/m^(3),R均大于0.879,随着土壤深度增加,反演效果减弱。③各模型受驱动要素影响显著,BP和BAS-BP模型在McClellanville站的反演效果和稳定性较优,而在MAWORS站的反演效果和稳定性较差。在McClellanville站,基于BP和BAS-BP模型训练集与测试集的R平均变化幅度分别为10.789%、5.061%,而在MAWORS站分别增长至38.531%、14.624%。④综合比较两种模型,BAS-BP模型反演精度更高,稳定性更好,更适应于表层至深层土壤湿度的反演。 展开更多
关键词 多层土壤湿度 土壤湿度反演 BP神经网络 天牛须搜索算法 机器学习
下载PDF
Big graph search: challenges and techniques 被引量:6
18
作者 Shuai MA Jia LI +2 位作者 Chunming HU Xuelian LIN Jinpeng HUAI 《Frontiers of Computer Science》 SCIE EI CSCD 2016年第3期387-398,共12页
On one hand, compared with traditional rela- tional and XML models, graphs have more expressive power and are widely used today. On the other hand, various ap- plications of social computing trigger the pressing need ... On one hand, compared with traditional rela- tional and XML models, graphs have more expressive power and are widely used today. On the other hand, various ap- plications of social computing trigger the pressing need of a new search paradigm. In this article, we argue that big graph search is the one filling this gap. We first introduce the ap- plication of graph search in various scenarios. We then for- malize the graph search problem, and give an analysis of graph search from an evolutionary point of view, followed by the evidences from both the industry and academia. After that, we analyze the difficulties and challenges of big graph search. Finally, we present three classes of techniques to- wards big graph search: query techniques, data techniques and distributed computing techniques. 展开更多
关键词 graph search big data query techniques data techniques distributed computing
原文传递
基于BSA-BP神经网络方法的引水隧洞围岩参数反演模型及应用 被引量:1
19
作者 张忠义 《水电能源科学》 北大核心 2023年第5期113-116,共4页
针对地下工程围岩参数取值,提出将回溯搜索优化算法(BSA)与BP神经网络相结合的混合网络(BSA-BP)方法,对隧道围岩参数进行反演研究。通过建立隧道有限元开挖模型,利用反演参数计算监测断面的位移并与现场实测值进行对比,最终对围岩稳定... 针对地下工程围岩参数取值,提出将回溯搜索优化算法(BSA)与BP神经网络相结合的混合网络(BSA-BP)方法,对隧道围岩参数进行反演研究。通过建立隧道有限元开挖模型,利用反演参数计算监测断面的位移并与现场实测值进行对比,最终对围岩稳定性进行分析预测。结果表明,经BSA算法优化的BP神经网络相对于GA-BP神经网络,具有更快的反演速度与计算效率。利用BSA-BP神经网络反演参数得到的位移计算值与现场实测值相对误差均在5%以内,表明该模型具有较高的反演精度,合理可行,为地下工程参数反演提供了一种新方法。 展开更多
关键词 断层破碎带 参数反演 BP神经网络 回溯搜索技术
下载PDF
长测距地基点云密度自适应平面分割算法 被引量:1
20
作者 安奥博 陈茂霖 +2 位作者 赵立都 马成林 刘祥江 《激光技术》 CAS CSCD 北大核心 2023年第5期606-612,共7页
为了解决长测距地面激光点云高密度变化的问题,采用了一种密度自适应的平面分割方法。首先基于估算理论点间距构建动态邻域搜索范围,联合内指标和香农熵确定最佳邻域并计算维度特征;然后根据最佳邻域、维度特征、法向量和点面距设计区... 为了解决长测距地面激光点云高密度变化的问题,采用了一种密度自适应的平面分割方法。首先基于估算理论点间距构建动态邻域搜索范围,联合内指标和香农熵确定最佳邻域并计算维度特征;然后根据最佳邻域、维度特征、法向量和点面距设计区域增长规则,得到初步分割结果;最终通过面片合并优化分割结果,并在最长扫描距离为1 km的单站地面激光扫描数据进行了实验验证。结果表明,该方法分割准确率达到95%,召回率达到92%,能够准确对长测距地基点云中的建筑物平面进行分割;与传统香农熵方法相比,本文中使用动态邻域搜索范围可以显著提高算法效率。该方法能高效准确地从大场景点云中提取建筑物平面,为城市3维建模提供了参考。 展开更多
关键词 激光技术 分割 动态邻域搜索范围 最佳邻域 维度特征 区域增长
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部