In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y ...In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.展开更多
Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (...Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (CWUMSN) is first pre- sented. A CWUMSN can monitor the environment and locate miners in underground mines. The lowest density deployment strate- gies of cluster head nodes are discussed theoretically. We prove that the lifetime of CWUMSN with a non-uniform deployment strategy is longer than with a uniform deployment strategy. Secondly, we present the algorithm of non-uniform lowest density de- ployment of cluster head nodes. Next, we propose a dynamic choice algorithm of cluster head nodes for CWUMSN which can im- prove the adaptability of networks. Our experiments of CWUMSN with both non-uniform lowest density and uniform lowest den- sity deployments are simulated. The results show that the lifetime of CWUMSN with non-uniform lowest density deployment is almost 2.5 times as long as that of the uniform lowest density deployment. This work provides a new deployment strategy for wire- less underground mine sensor networks and then effectively promotes the application of wireless sensor networks to underground mines.展开更多
A quantum network concerns several independent entangled resources and can create strong quantum correlations by performing joint measurements on some observers.In this paper,we discuss an n-partite chain network with...A quantum network concerns several independent entangled resources and can create strong quantum correlations by performing joint measurements on some observers.In this paper,we discuss an n-partite chain network with each of two neighboring observers sharing an arbitrary Bell state and all intermediate observers performing some positive-operator-valued measurements with parameterλ.The expressions of all post-measurement states between any two observers are obtained,and their quantifications of Bell nonlocality,Einstein-Podolsky-Rosen steering and entanglement with different ranges ofλare respectively detected and analyzed.展开更多
Normal alkane is an unbranched alkane whose structural formula is H–CH2–CH2–…–CH2–…–CH2–H,which can be regarded as a reconfigurable chain-type structure composed of–CH2–modules.Inspired by normal alkane,a n...Normal alkane is an unbranched alkane whose structural formula is H–CH2–CH2–…–CH2–…–CH2–H,which can be regarded as a reconfigurable chain-type structure composed of–CH2–modules.Inspired by normal alkane,a normal-alkane-like reconfigurable modular robot (NAR) is proposed.The module consists of two differential gear trains mounted orthogonally.Each differential gear train contains two input degrees of freedom and two output degrees of freedom.Due to the genderless interface design,multiple modules can be assembled into chain-type configuration.With the genderless interfaces and flexible degrees of freedom,NAR can be reconfigured into different dimensions of spatial configuration.The bond matrix is used to describe the configuration,which represents the bond attitude of the adjacent connected modules.In addition,full interconnected geometric feature (FIGF) algorithm is proposed for non-isomorphic configuration enumeration and judgment.The configurations with three modules are simulated and the results verify the feasibility of the algorithm.Finally,a prototype with three modules is fabricated and the configuration motion sequence is demonstrated.展开更多
An open-framework zinc-cobalt phosphate CoZnPO4-V with 16-ring extra-large-pore channels has been obtained in the presence of chain-type polyamines as the structure directing agent (SDA). Its large single crystal suit...An open-framework zinc-cobalt phosphate CoZnPO4-V with 16-ring extra-large-pore channels has been obtained in the presence of chain-type polyamines as the structure directing agent (SDA). Its large single crystal suited for structure refinement has been prepared with the assistance of small organic amines. Single-crystal X-ray diffraction analysis has shown that CoZnPO4-V is a novel metal phosphate. It crystallizes in monoclinic space group P21/c (No. 14), with a = 31.936(3) , b = 8.3775(7) , c = 15.7874(13) , α = γ = 90°, β = 97.0530(10)°, V = 4191.8(6) 3, and Z = 4 with R1 = 0.0455,wR2 = 0.0869. Its three-dimensional framework can be considered as stacking from two-dimensional nets and one-dimensional units as linkers. Between the stacking nets and linkers are located extra-large channels with 16-ring apertures.展开更多
基金supported by the China Doctoral Discipline New Teacher Foundation(200802901507)the Sichuan Province Basic Research Plan Project(2013JY0165)the Cultivating Programme of Excellent Innovation Team of Chengdu University of Technology(KYTD201301)
文摘In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.
基金Project 20070411065 supported by the China Postdoctoral Science Foundation
文摘Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (CWUMSN) is first pre- sented. A CWUMSN can monitor the environment and locate miners in underground mines. The lowest density deployment strate- gies of cluster head nodes are discussed theoretically. We prove that the lifetime of CWUMSN with a non-uniform deployment strategy is longer than with a uniform deployment strategy. Secondly, we present the algorithm of non-uniform lowest density de- ployment of cluster head nodes. Next, we propose a dynamic choice algorithm of cluster head nodes for CWUMSN which can im- prove the adaptability of networks. Our experiments of CWUMSN with both non-uniform lowest density and uniform lowest den- sity deployments are simulated. The results show that the lifetime of CWUMSN with non-uniform lowest density deployment is almost 2.5 times as long as that of the uniform lowest density deployment. This work provides a new deployment strategy for wire- less underground mine sensor networks and then effectively promotes the application of wireless sensor networks to underground mines.
基金supported by the National Natural Science Foundation of China(12171290,12071336)the Fundamental Research Program of Shanxi Province(202303021222242).
文摘A quantum network concerns several independent entangled resources and can create strong quantum correlations by performing joint measurements on some observers.In this paper,we discuss an n-partite chain network with each of two neighboring observers sharing an arbitrary Bell state and all intermediate observers performing some positive-operator-valued measurements with parameterλ.The expressions of all post-measurement states between any two observers are obtained,and their quantifications of Bell nonlocality,Einstein-Podolsky-Rosen steering and entanglement with different ranges ofλare respectively detected and analyzed.
基金the National Key R&D Program of China(Grant No.2018YFB1304600)the National Natural Science Foundation of China(Grant No.51775541)+2 种基金CAS Interdisciplinary Innovation Team(Grant No.JCTD-2018-11)the State Key Laboratory of Robotics Foundation(Grant No.Y91Z0303)the Liaoning Provincial Natural Science Foundation(Grant No.2020-MS-033)。
文摘Normal alkane is an unbranched alkane whose structural formula is H–CH2–CH2–…–CH2–…–CH2–H,which can be regarded as a reconfigurable chain-type structure composed of–CH2–modules.Inspired by normal alkane,a normal-alkane-like reconfigurable modular robot (NAR) is proposed.The module consists of two differential gear trains mounted orthogonally.Each differential gear train contains two input degrees of freedom and two output degrees of freedom.Due to the genderless interface design,multiple modules can be assembled into chain-type configuration.With the genderless interfaces and flexible degrees of freedom,NAR can be reconfigured into different dimensions of spatial configuration.The bond matrix is used to describe the configuration,which represents the bond attitude of the adjacent connected modules.In addition,full interconnected geometric feature (FIGF) algorithm is proposed for non-isomorphic configuration enumeration and judgment.The configurations with three modules are simulated and the results verify the feasibility of the algorithm.Finally,a prototype with three modules is fabricated and the configuration motion sequence is demonstrated.
基金Supported by the National Natural Science Foundation of China (Grant No. 20873069)973 Project (Grant No. 2009CB623502)
文摘An open-framework zinc-cobalt phosphate CoZnPO4-V with 16-ring extra-large-pore channels has been obtained in the presence of chain-type polyamines as the structure directing agent (SDA). Its large single crystal suited for structure refinement has been prepared with the assistance of small organic amines. Single-crystal X-ray diffraction analysis has shown that CoZnPO4-V is a novel metal phosphate. It crystallizes in monoclinic space group P21/c (No. 14), with a = 31.936(3) , b = 8.3775(7) , c = 15.7874(13) , α = γ = 90°, β = 97.0530(10)°, V = 4191.8(6) 3, and Z = 4 with R1 = 0.0455,wR2 = 0.0869. Its three-dimensional framework can be considered as stacking from two-dimensional nets and one-dimensional units as linkers. Between the stacking nets and linkers are located extra-large channels with 16-ring apertures.