A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the...A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molybdenite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.展开更多
The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challe...The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.展开更多
Copper,an essential metal for the energy transition,is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods.The risks and harmful impacts of these processes pose significant co...Copper,an essential metal for the energy transition,is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods.The risks and harmful impacts of these processes pose significant concerns for environmental and human safety,highlighting the need for more efficient and eco-friendly hydrometallurgical methods.This review article emphasizes current pro-cesses such as oxidative leaching,bioleaching,and pressure leaching that have demonstrated efficiency in overcoming the complicated chalcopyrite network.Oxidative leaching operates under benign conditions within the leaching media;nevertheless,the introduction of oxidizing agents provides benefits and advantages.Bioleaching,a non-aggressive method,has shown a gradual increase in copper extrac-tion efficiency and has been explored using both primary and secondary sources.Pressure leaching,known for its effectiveness and se-lectivity in copper extraction,is becoming commercially more viable with increased research investments.This research also provides im-portant data for advancing future research in the field.展开更多
The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-de...The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-depressant flotation separation of chalcopyrite from pyrite,as an effective and environmentally friendly strategy.Without the addition of depressants,seawater oxidation for 3 d effectively depressed pyrite flotation,with the highest recovery difference greater than 70%and a selectivity index greater than 6 between chalcopyrite and pyrite.The surface investigation showed that pyrite surface was more readily oxidized to form hydrophilic Fe oxidants/oxyhydroxides,as compared to that of chalcopyrite.Further UV-visible spectrophotometer and Fourier transform infrared spectrum(FTIR)results indicated that xanthate was less adsorbed onto the treated pyrite surface,resulting in un-floatable particles.Chalcopyrite surface was changed slightly due to seawater oxidation,thereby insignificantly affecting its flotation.The coordination theory was further used to reveal the combination mechanisms between xanthate and pyrite or chalcopyrite.This study therefore provides a promising strategy to effectively separate chalcopyrite from pyrite,especially in the freshwater-deficient area.展开更多
Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment a...Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation.展开更多
Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric ac...Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed,and the efficient separation of galena and chalcopyrite was successfully realized.Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena.Meanwhile,the contact angle and floatability of corroded chalcopyrite remained almost unaffected.Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface,whereas the chalcopyrite surface remained unaltered.X-ray photoelectron spectroscopy results showed that the chemical state of S^(2-)on the surface of corroded galena was oxidized to SO_(4)^(2-).A layer of hydrophilic PbSO4was formed on the surface,leading to a sharp decrease in galena floatability.Meanwhile,new hydrophobic CuS_(2),CuS,and Cu_(1-x)Fe_(1-y)S_(2-z)species exhibiting good floatability were generated on the chalcopyrite surface.Finally,theoretical analysis results were further verified by corrosion–flotation separation experiments.The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity,corrosion temperature,and corrosion time.A novel approach has been outlined in this study,providing potential applications in the efficient separation of refractory copper–lead sulfide ore.展开更多
This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floata...This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floatability of chalcopyrite within pH range of 4.0–12.0.Zeta potential tests showed that the addition of PF induced the formation of more amounts of hydrophilic species on the surface of galena under an alkaline environment.Industrial grade O-isopropyl-N-ethyl thionocarbamate(IPETC)chemically adsorbed on the surface of the PF-treated chalcopyrite and galena after its addition.Contact angle measurements showed that with the addition of PF,the contact angle of the galena surface significantly decreased compared with the chalcopyrite surface.Localized electrochemical impedance spectroscopy(LEIS)tests showed that the addition of PF increased the impedance of the galena surface.X-ray photoelectron spectroscopy(XPS)analyses revealed that the formation of hydrophilic species,namely lead sulfite,lead hydroxide and ferric hydroxide,on the galena surface,decreased its floatability in the presence of PF,while the formation of hydrophobic species,namely copper disulfide and elemental sulfur,on the chalcopyrite surface,maintained its floatability.Finally,a descriptive model for the reaction of PF with chalcopyrite and galena was proposed.展开更多
Chalcopyrite is a common copper-bearing mineral with antiferromagnetic properties.However,this property has rarely been considered in previous studies for detailed adsorption behaviors of molecules on chalcopyrite.Bas...Chalcopyrite is a common copper-bearing mineral with antiferromagnetic properties.However,this property has rarely been considered in previous studies for detailed adsorption behaviors of molecules on chalcopyrite.Based on density functional theory(DFT),new adsorption pathways by H_(2)O and O_(2)on the chalcopyrite metal terminated(112)surface((112)-M)is found in this work.First,through simulating the adsorption of an isolated water molecule and monolayer water molecules,it is confirmed that H_(2)O molecules tend to adsorb on the surface Fe atoms more than on the surface Cu atoms.Then,we studied various adsorption behaviors of the O_(2)molecule.It is found that the adsorption on the hollow FeAFe site is the most stable case;however,O_(2)is undissociated.Two adsorption cases will happen when H_(2)OAO_(2)adsorb simultaneously on the surface.For the S site,the H_(2)O molecule thoroughly dissociated and formed SAO species,and the other case is H_(2)O undissociated adsorbing at the Cu site.For the former case,it is interesting that H_(2)O is dissociated before O_(2).展开更多
The flotabilities of chalcopyrite and galena with sodium humate(HA) and ammonium persulfate(APS) as the depressant were studied by flotation test, adsorption measurement and infrared spectroscopic analysis. Single...The flotabilities of chalcopyrite and galena with sodium humate(HA) and ammonium persulfate(APS) as the depressant were studied by flotation test, adsorption measurement and infrared spectroscopic analysis. Single mineral flotation test shows that the slurry oxidation environment and the proper oxidation of galena surface are prerequisites for the depression of galena by sodium humate. The closed-circuit flotation test of copper/lead bulk concentrate shows that the grade and recovery of Cu reach 30.47% and 89.16% respectively and those of Pb reach 2.06% and1.58% respectively in copper concentrate, and the grade and recovery of Pb reach 50.34% and 98.42% and those of Cu reach 1.45% and 10.84% respectively in lead concentrate with HA and APS. The selective depression effect of HA and APS is more obvious than that of potassium dichromate. The results of FTIR analysis and adsorption measurements indicate that the adsorption of sodium humate on the fresh surface of galena is negligible, while after oxidation, sodium humate can be chemically adsorbed on the surface of galena. According to the theory of solubility product, the sodium humate can display the oxidation product PbSO_4, after then, adsorb on the surface of lead chemically to produce inhibitory effect. Thus, it can be seen that the combination of HA and APS is an efficient non-toxic reagent to achieve cleaning separation copper/lead bulk concentrate by flotation. The combination of HA and APS is an efficient non-toxic reagent to achieve cleaning for copper/lead bulk concentrate by flotation.展开更多
The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different condition...The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.展开更多
The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction ...The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.展开更多
Extracellular polymeric substances (EPS) were extracted from Acidithiobacillus ferrooxidans through sonication method associated with centrifugation, which was evaluated tentatively with 2-keto-3-deoxyoctonic acid ...Extracellular polymeric substances (EPS) were extracted from Acidithiobacillus ferrooxidans through sonication method associated with centrifugation, which was evaluated tentatively with 2-keto-3-deoxyoctonic acid (KDO) as the indicator of EPS by spectrophotometry. Then the effect of EPS of A. ferrooxidans on the adhesion on chalcopyrite and pyrite surfaces was studied through a series of comparative experiments. The untreated cells and EPS-free cells of A. ferrooxidans were mixed with EPS suspension, Fe^2+ or Fe^3+, respectively. The planktonic cells were monitored in 2 h during bioleaching. The results indicate that the presence of EPS on the cell is an important factor for the adhesion to chalcopyrite and pyrite. A decrease of attachment of A. ferrooxidans to minerals was produced by the deficiency of EPS, which can recover mostly when the EPS was re-added into the EPS-free cells. The restoring extent is more obvious in pyrite than in chalcopyrite. The extent of cell adhesion to chalcopyrite increased when EPS and Fe^3+ added, and decreased when Fe^2+ added, which imply the electrostatic interaction plays a main role in initial adhesion between bacteria and minerals and it is a driving force for bacteria to produce EPS probably as a result of regaining their attachment ability to copper sulphides.展开更多
The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculatio...The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.展开更多
Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passi...Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passivation of chalcopyrite was greatly weakened in strengthening leaching due to the change of leaching conditions. The copper leaching efficiency was increased from 50% to 89.8% through adding beads. The SEM and X-ray diffraction (XRD) analyses illustrate that there are few jarosite precipitates and weak passivation on the surface of chalcopyrite in strengthening leaching. In contrast, there are thick and compact jarosite precipitate and obvious passivation in ordinary leaching, which hinders further dissolution of chalcopyrite.展开更多
A novel synthesized reagent, O,O-bis(2,3-dihydroxypropyl) dithiophosphate (DHDTP), was investigated as depressant on the depression of chalcopyrite and galena, when ammonium dibutyl dithiophosphate (DDTP) was us...A novel synthesized reagent, O,O-bis(2,3-dihydroxypropyl) dithiophosphate (DHDTP), was investigated as depressant on the depression of chalcopyrite and galena, when ammonium dibutyl dithiophosphate (DDTP) was used as the collector in flotation tests. Zeta potential and adsorption measurement were performed to study the interaction between depressant and minerals. The flotation tests of two minerals show that DHDTP has slight depression on chalcopyrite in the whole pH range and strong depression on galena in the pH range of 6-10. When DHDTP dosage is increased, the recovery of galena decreases rapidly, while that of the chalcopyrite decreases slightly. The satisfied separation results of artificially mixed samples are that the copper grade and recovery rates of concentrate are 24.08% and 81%, respectively, when the pH is 6 with 278 mg/L DHDTP. Zeta potential and adsorption measurements show that DHDTP has more strongly adsorotion capacity to galena than chalcoovrite.展开更多
The variation of microbial community structure was investigated for the tank bioleaching process of Pb-Zn-Sn chalcopyrite concentrate in the presence of mixed moderately thermophilic bacteria. The parameters, such as ...The variation of microbial community structure was investigated for the tank bioleaching process of Pb-Zn-Sn chalcopyrite concentrate in the presence of mixed moderately thermophilic bacteria. The parameters, such as pH value, solution potential and concentrations of metal ions, were determined by the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the succession of microbial community. The results showed that a final copper extraction rate of 85.6% could be obtained after tank bioleaching for 30 d. The Acidithiobacillus caldus was the dominant population with abundance of about 73.80%in the initial stage, then Sulfobacillus thermosulfidooxidans dominated from the 18th day to the end of bioleaching, while the abundance of Leptospirillum ferriphilum changed slightly. A higher solution potential within a certain range and appropriate concentration of ferric ions were essential for this tank bioleaching of chalcopyrite.展开更多
The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was mu...The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite(CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite(CuS) and cupric ions, and the formed covellite(CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite(CuS), and the initial reduction reaction was the rate-limiting step.展开更多
The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectrosc...The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectroscopy.Bioleaching results show that chalcopyrite dissolution rate increases with the decrease of the initial pH in chemical leaching,while the influence of initial pH on bioleaching is on the contrary.The presence of Acidianus manzaensis does not promote chalcopyrite dissolution under initial pH1.0,which mainly results from serious inhibition of high acidity to the growth of Acidianus manzaensis.Electrochemical experiments results show that anodic oxidation currents of electrolyte with or without Acidianus manzaensis both increase with the increase of initial pH,and covellite and sulfur are detected on the electrode surface.The results confirm that chalcopyrite dissolution in chemical leaching is under the combined action of oxidation and non-oxidation of proton,with conversion of chalcopyrite to covellite and elemental sulfur.展开更多
Electrochemical behavior of natural chalcopyrite in electrolyte solution containing 5×10?4 mol/L ethyl xanthate, and the effect of potential on the composition and characteristics of surface film were studied by...Electrochemical behavior of natural chalcopyrite in electrolyte solution containing 5×10?4 mol/L ethyl xanthate, and the effect of potential on the composition and characteristics of surface film were studied by cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The adsorption of xanthate (X?) occurred on the mineral surface at open-circuit potential (OCP). In the potential range from -0.11 to 0.2 V, the electrochemical reaction related to the formation of the hydrophobic film of dixanthogen (X2) occurred on natural chalcopyrite surface. This surface film had high coverage and large thickness at the potential of 0 V, but it had low coverage and small thickness at the potentials of 0.1 V and 0.2 V. Electrochemical activation started to occur when the potential was higher than 0.2 V, and the film of X2 transformed to plenty of Cu(Ⅱ) and Fe(Ⅲ) oxygen-containing species which had the porous and loose characteristics.展开更多
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of ...X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.展开更多
基金support from the Project of Zhongyuan Critical Metals Laboratory(No.GJJSGFYQ202334)Natural Science Foundation of Henan Province(No.242300420002)+1 种基金National key research and development program(No.2020YFC1908804)National Natural Science Foundation of China(No.51804275).Moreover,we also thank Modern Analysis and Gene Sequencing Centre in Zhengzhou University.
文摘A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molybdenite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.
基金the National Natural Science Foundation of China(Nos.52204298 and 52004335)the National Key R&D Program of China(Nos.2022YFC2904502 and 2022YFC2904501)+1 种基金the Major Science and Technology Projects in Yunnan Province(No.202202AB080012)the Science Research Initiation Fund of Central South University(No.202044019).
文摘The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.
基金the Fundação de Amparo àPesquisa do Estado de São Paulo and Capes(grants:2019/11866-5,2020/00493-0,2021/14842-0,and 2023/01032-5 São Paulo Research Foundation)for financial support.
文摘Copper,an essential metal for the energy transition,is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods.The risks and harmful impacts of these processes pose significant concerns for environmental and human safety,highlighting the need for more efficient and eco-friendly hydrometallurgical methods.This review article emphasizes current pro-cesses such as oxidative leaching,bioleaching,and pressure leaching that have demonstrated efficiency in overcoming the complicated chalcopyrite network.Oxidative leaching operates under benign conditions within the leaching media;nevertheless,the introduction of oxidizing agents provides benefits and advantages.Bioleaching,a non-aggressive method,has shown a gradual increase in copper extrac-tion efficiency and has been explored using both primary and secondary sources.Pressure leaching,known for its effectiveness and se-lectivity in copper extraction,is becoming commercially more viable with increased research investments.This research also provides im-portant data for advancing future research in the field.
基金the National Natural Science Foundation of China(No.51974215).
文摘The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-depressant flotation separation of chalcopyrite from pyrite,as an effective and environmentally friendly strategy.Without the addition of depressants,seawater oxidation for 3 d effectively depressed pyrite flotation,with the highest recovery difference greater than 70%and a selectivity index greater than 6 between chalcopyrite and pyrite.The surface investigation showed that pyrite surface was more readily oxidized to form hydrophilic Fe oxidants/oxyhydroxides,as compared to that of chalcopyrite.Further UV-visible spectrophotometer and Fourier transform infrared spectrum(FTIR)results indicated that xanthate was less adsorbed onto the treated pyrite surface,resulting in un-floatable particles.Chalcopyrite surface was changed slightly due to seawater oxidation,thereby insignificantly affecting its flotation.The coordination theory was further used to reveal the combination mechanisms between xanthate and pyrite or chalcopyrite.This study therefore provides a promising strategy to effectively separate chalcopyrite from pyrite,especially in the freshwater-deficient area.
基金financial supports from the Key Program for International S&T Cooperation Projects of China (No. 2021YFE0106800)the National Natural Science Foundation of China (No. U2067201)+3 种基金the Leading Talents of S & T Innovation of Hunan Province, China (No. 2021RC4002)the Science Fund for Distinguished Young Scholars of Hunan Province, China (No. 2020JJ2044)the Key Research and Development Program of Hunan Province, China (No. 2021SK2043)the National 111 Project, China (No. B14034)。
文摘Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation.
基金financially supported by the National Natural Science Foundation of China(No.52064027)Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)。
文摘Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed,and the efficient separation of galena and chalcopyrite was successfully realized.Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena.Meanwhile,the contact angle and floatability of corroded chalcopyrite remained almost unaffected.Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface,whereas the chalcopyrite surface remained unaltered.X-ray photoelectron spectroscopy results showed that the chemical state of S^(2-)on the surface of corroded galena was oxidized to SO_(4)^(2-).A layer of hydrophilic PbSO4was formed on the surface,leading to a sharp decrease in galena floatability.Meanwhile,new hydrophobic CuS_(2),CuS,and Cu_(1-x)Fe_(1-y)S_(2-z)species exhibiting good floatability were generated on the chalcopyrite surface.Finally,theoretical analysis results were further verified by corrosion–flotation separation experiments.The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity,corrosion temperature,and corrosion time.A novel approach has been outlined in this study,providing potential applications in the efficient separation of refractory copper–lead sulfide ore.
基金supported by the National Natural Science Foun-dation of China(Nos.51964027 and 52264028)Basic Research Project for High-level Talents of Yunnan Province(No.KKS2202152011)open foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF1602).
文摘This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floatability of chalcopyrite within pH range of 4.0–12.0.Zeta potential tests showed that the addition of PF induced the formation of more amounts of hydrophilic species on the surface of galena under an alkaline environment.Industrial grade O-isopropyl-N-ethyl thionocarbamate(IPETC)chemically adsorbed on the surface of the PF-treated chalcopyrite and galena after its addition.Contact angle measurements showed that with the addition of PF,the contact angle of the galena surface significantly decreased compared with the chalcopyrite surface.Localized electrochemical impedance spectroscopy(LEIS)tests showed that the addition of PF increased the impedance of the galena surface.X-ray photoelectron spectroscopy(XPS)analyses revealed that the formation of hydrophilic species,namely lead sulfite,lead hydroxide and ferric hydroxide,on the galena surface,decreased its floatability in the presence of PF,while the formation of hydrophobic species,namely copper disulfide and elemental sulfur,on the chalcopyrite surface,maintained its floatability.Finally,a descriptive model for the reaction of PF with chalcopyrite and galena was proposed.
基金The authors are grateful for the financial support provided by the National Natural Science Foundation of China(NSFC)(Nos.51974094,51964004,and U20A20269).
文摘Chalcopyrite is a common copper-bearing mineral with antiferromagnetic properties.However,this property has rarely been considered in previous studies for detailed adsorption behaviors of molecules on chalcopyrite.Based on density functional theory(DFT),new adsorption pathways by H_(2)O and O_(2)on the chalcopyrite metal terminated(112)surface((112)-M)is found in this work.First,through simulating the adsorption of an isolated water molecule and monolayer water molecules,it is confirmed that H_(2)O molecules tend to adsorb on the surface Fe atoms more than on the surface Cu atoms.Then,we studied various adsorption behaviors of the O_(2)molecule.It is found that the adsorption on the hollow FeAFe site is the most stable case;however,O_(2)is undissociated.Two adsorption cases will happen when H_(2)OAO_(2)adsorb simultaneously on the surface.For the S site,the H_(2)O molecule thoroughly dissociated and formed SAO species,and the other case is H_(2)O undissociated adsorbing at the Cu site.For the former case,it is interesting that H_(2)O is dissociated before O_(2).
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject supported by the Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The flotabilities of chalcopyrite and galena with sodium humate(HA) and ammonium persulfate(APS) as the depressant were studied by flotation test, adsorption measurement and infrared spectroscopic analysis. Single mineral flotation test shows that the slurry oxidation environment and the proper oxidation of galena surface are prerequisites for the depression of galena by sodium humate. The closed-circuit flotation test of copper/lead bulk concentrate shows that the grade and recovery of Cu reach 30.47% and 89.16% respectively and those of Pb reach 2.06% and1.58% respectively in copper concentrate, and the grade and recovery of Pb reach 50.34% and 98.42% and those of Cu reach 1.45% and 10.84% respectively in lead concentrate with HA and APS. The selective depression effect of HA and APS is more obvious than that of potassium dichromate. The results of FTIR analysis and adsorption measurements indicate that the adsorption of sodium humate on the fresh surface of galena is negligible, while after oxidation, sodium humate can be chemically adsorbed on the surface of galena. According to the theory of solubility product, the sodium humate can display the oxidation product PbSO_4, after then, adsorb on the surface of lead chemically to produce inhibitory effect. Thus, it can be seen that the combination of HA and APS is an efficient non-toxic reagent to achieve cleaning separation copper/lead bulk concentrate by flotation. The combination of HA and APS is an efficient non-toxic reagent to achieve cleaning for copper/lead bulk concentrate by flotation.
基金Project(2010CB630904) supported by the National Basic Research Program of ChinaProject(50621063) supported by the Chinese Science Foundation for Distinguished Group
文摘The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.
基金Project(50621063) supported by the National Natural Science Foundation of ChinaProject(2010CB630903) supported by the National Basic Research Program of China
文摘The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.
基金Project (2010CB630901) supported by the National Basic Research Program of ChinaProject (50621063) supported by the National Natural Science Foundation of China
文摘Extracellular polymeric substances (EPS) were extracted from Acidithiobacillus ferrooxidans through sonication method associated with centrifugation, which was evaluated tentatively with 2-keto-3-deoxyoctonic acid (KDO) as the indicator of EPS by spectrophotometry. Then the effect of EPS of A. ferrooxidans on the adhesion on chalcopyrite and pyrite surfaces was studied through a series of comparative experiments. The untreated cells and EPS-free cells of A. ferrooxidans were mixed with EPS suspension, Fe^2+ or Fe^3+, respectively. The planktonic cells were monitored in 2 h during bioleaching. The results indicate that the presence of EPS on the cell is an important factor for the adhesion to chalcopyrite and pyrite. A decrease of attachment of A. ferrooxidans to minerals was produced by the deficiency of EPS, which can recover mostly when the EPS was re-added into the EPS-free cells. The restoring extent is more obvious in pyrite than in chalcopyrite. The extent of cell adhesion to chalcopyrite increased when EPS and Fe^3+ added, and decreased when Fe^2+ added, which imply the electrostatic interaction plays a main role in initial adhesion between bacteria and minerals and it is a driving force for bacteria to produce EPS probably as a result of regaining their attachment ability to copper sulphides.
基金Projects(51464029,51168020,51404119,)supported by the National Natural Science Foundation of ChinaProject(2014Y084)supported by the Natural Science Foundation of Yunnan Province Education Department,ChinaProjects(41118011,201421066)supported by the Cultivation Program of Kunming University of Science and Technology,China
文摘The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.
基金Projects (51174062, 51104036, 50874030) supported by the National Natural Science Foundation of ChinaProjects (2012AA061502) supported by the High-tech Research and Development Program of ChinaProjects (N100602007) supported by the Fundamental Research Funds for the Central Universities, China
文摘Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passivation of chalcopyrite was greatly weakened in strengthening leaching due to the change of leaching conditions. The copper leaching efficiency was increased from 50% to 89.8% through adding beads. The SEM and X-ray diffraction (XRD) analyses illustrate that there are few jarosite precipitates and weak passivation on the surface of chalcopyrite in strengthening leaching. In contrast, there are thick and compact jarosite precipitate and obvious passivation in ordinary leaching, which hinders further dissolution of chalcopyrite.
基金Project(2008BAB34B01)supported by the National Key Technology R&D Program of China
文摘A novel synthesized reagent, O,O-bis(2,3-dihydroxypropyl) dithiophosphate (DHDTP), was investigated as depressant on the depression of chalcopyrite and galena, when ammonium dibutyl dithiophosphate (DDTP) was used as the collector in flotation tests. Zeta potential and adsorption measurement were performed to study the interaction between depressant and minerals. The flotation tests of two minerals show that DHDTP has slight depression on chalcopyrite in the whole pH range and strong depression on galena in the pH range of 6-10. When DHDTP dosage is increased, the recovery of galena decreases rapidly, while that of the chalcopyrite decreases slightly. The satisfied separation results of artificially mixed samples are that the copper grade and recovery rates of concentrate are 24.08% and 81%, respectively, when the pH is 6 with 278 mg/L DHDTP. Zeta potential and adsorption measurements show that DHDTP has more strongly adsorotion capacity to galena than chalcoovrite.
基金Project (51374248) supported by the National Natural Science Foundation of ChinaProject (NCET-13-0595) supported by the Program for New Century Excellent Talents in University,China+3 种基金Project (2012AA061501) supported by the High-tech Research and Development Program of ChinaProject (2010CB630905) supported by the National Basic Research Program of ChinaProject (20120162120010) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject (CSUZC2012020) supported by the Open-End Fund for the Valuable in Central South University,China
文摘The variation of microbial community structure was investigated for the tank bioleaching process of Pb-Zn-Sn chalcopyrite concentrate in the presence of mixed moderately thermophilic bacteria. The parameters, such as pH value, solution potential and concentrations of metal ions, were determined by the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the succession of microbial community. The results showed that a final copper extraction rate of 85.6% could be obtained after tank bioleaching for 30 d. The Acidithiobacillus caldus was the dominant population with abundance of about 73.80%in the initial stage, then Sulfobacillus thermosulfidooxidans dominated from the 18th day to the end of bioleaching, while the abundance of Leptospirillum ferriphilum changed slightly. A higher solution potential within a certain range and appropriate concentration of ferric ions were essential for this tank bioleaching of chalcopyrite.
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(CX2014B091)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite(CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite(CuS) and cupric ions, and the formed covellite(CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite(CuS), and the initial reduction reaction was the rate-limiting step.
基金Projects (50974140,51274257) supported by the National Natural Science Foundation of ChinaProject (JXXJBS11003) supported by the Doctor Initiating Foundation of Jiangxi University of Science and Technology,China
文摘The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectroscopy.Bioleaching results show that chalcopyrite dissolution rate increases with the decrease of the initial pH in chemical leaching,while the influence of initial pH on bioleaching is on the contrary.The presence of Acidianus manzaensis does not promote chalcopyrite dissolution under initial pH1.0,which mainly results from serious inhibition of high acidity to the growth of Acidianus manzaensis.Electrochemical experiments results show that anodic oxidation currents of electrolyte with or without Acidianus manzaensis both increase with the increase of initial pH,and covellite and sulfur are detected on the electrode surface.The results confirm that chalcopyrite dissolution in chemical leaching is under the combined action of oxidation and non-oxidation of proton,with conversion of chalcopyrite to covellite and elemental sulfur.
基金Project (50874030) supported by the National Natural Science Foundation of ChinaProject (N090602011) supported by the Fundamental Research Funds for the Central Universities, China Project (2009AA06Z104) supported by the National High-Tech Research and Development Program of China
文摘Electrochemical behavior of natural chalcopyrite in electrolyte solution containing 5×10?4 mol/L ethyl xanthate, and the effect of potential on the composition and characteristics of surface film were studied by cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The adsorption of xanthate (X?) occurred on the mineral surface at open-circuit potential (OCP). In the potential range from -0.11 to 0.2 V, the electrochemical reaction related to the formation of the hydrophobic film of dixanthogen (X2) occurred on natural chalcopyrite surface. This surface film had high coverage and large thickness at the potential of 0 V, but it had low coverage and small thickness at the potentials of 0.1 V and 0.2 V. Electrochemical activation started to occur when the potential was higher than 0.2 V, and the film of X2 transformed to plenty of Cu(Ⅱ) and Fe(Ⅲ) oxygen-containing species which had the porous and loose characteristics.
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692)supported by China Postdoctoral Science Foundation
文摘X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.