As the information network plays a more and more important role globally, the traditional network theories and technologies, especially those related to network security, can no longer meet the network development req...As the information network plays a more and more important role globally, the traditional network theories and technologies, especially those related to network security, can no longer meet the network development requirements. Offering the system with secure and trusted services has become a new focus in network research. This paper first discusses the meaning of and aspects involved in the trusted network. According to this paper, the trusted network should be a network where the network’s and users’ behaviors and their results are always predicted and manageable. The trustworthiness of a network mainly involves three aspects: service provider, information transmission and terminal user. This paper also analyzes the trusted network in terms of trusted model for network/user behaviors, architecture of trusted network, service survivability and network manageability, which is designed to give ideas on solving the problems that may be faced in developing the trusted network.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
Computer networks have to support an everincreasing array of applications,ranging from cloud computing in datacenters to Internet access for users.In order to meet the various demands,a large number of network devices...Computer networks have to support an everincreasing array of applications,ranging from cloud computing in datacenters to Internet access for users.In order to meet the various demands,a large number of network devices running different protocols are designed and deployed in networks.展开更多
基金the National NaturalScience Foundation of China under Grant90412012 and 60673187
文摘As the information network plays a more and more important role globally, the traditional network theories and technologies, especially those related to network security, can no longer meet the network development requirements. Offering the system with secure and trusted services has become a new focus in network research. This paper first discusses the meaning of and aspects involved in the trusted network. According to this paper, the trusted network should be a network where the network’s and users’ behaviors and their results are always predicted and manageable. The trustworthiness of a network mainly involves three aspects: service provider, information transmission and terminal user. This paper also analyzes the trusted network in terms of trusted model for network/user behaviors, architecture of trusted network, service survivability and network manageability, which is designed to give ideas on solving the problems that may be faced in developing the trusted network.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
文摘Computer networks have to support an everincreasing array of applications,ranging from cloud computing in datacenters to Internet access for users.In order to meet the various demands,a large number of network devices running different protocols are designed and deployed in networks.