期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
P144 Increases Adipose Tissue Volume by Inhibiting TGF-<i>β</i>1-Mediated Fibrous Capsule Formation in a Tissue Engineering Chamber
1
作者 Yaodong Yuan Jianhua Gao +3 位作者 Zi Jing Yan Shi Feng Lu Zhangbo Chen 《Journal of Biosciences and Medicines》 2021年第12期98-109,共12页
Tissue engineering chambers (TECs) represent a new and attractive in vivo tissue engineering model that can successfully generate mature adipose tissue. However, the newly formed adipose tissue is not able to fill the... Tissue engineering chambers (TECs) represent a new and attractive in vivo tissue engineering model that can successfully generate mature adipose tissue. However, the newly formed adipose tissue is not able to fill the volume of the chamber as expected. To investigate whether the capsule surrounding the newly formed adipose tissue limits the adipose tissue volume in the chamber, we detected fibrotic parameters two months after these chambers were implanted into rats. The results showed that the newly formed adipose tissue was surrounded by a thick layer of capsule, and the protein levels of transforming growth factor-<em>β</em>1 (TGF-<em>β</em>1), phosphorylated Smad2 (p-Smad2), connective tissue growth factor (CTGF), collagen type I (COL-I) and α-smooth muscle actin (<em>α</em>-SMA) in the capsule were increased. The levels of these proteins decreased following systemic administration of P144 (a peptide inhibitor of TGF-<em>β</em>1). Furthermore, the capsule thickness was significantly reduced, and the adipose tissue volume was markedly greater when using P144. These findings indicate that capsule formation, which is mediated through a TGF-<em>β</em>1 signaling pathway, restricted the volume of the engineered adipose tissue that was formed. This study may provide a new approach to regenerate amounts of adipose tissue for the reconstruction of large soft tissue defects. 展开更多
关键词 Adipose Tissue Tissue engineering chamber Capsule Formation Transforming Growth Factor-β1 P144
下载PDF
Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines 被引量:6
2
作者 Jiawen SONG Bing SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1043-1053,共11页
To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a ... To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method.With the specified loads,the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses.The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall.The methodology is further applied to the thrust chamber of LOX/Methane rocket engines.The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber.Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter c3= 0,and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when c3〉 0.The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall. 展开更多
关键词 Rocket engine Thrust chamber Regenerative cooling Heat transfer Mechanical load Cyclic plasticity Ratcheting
原文传递
Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions 被引量:5
3
作者 Qiang WEI Guozhu LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1391-1406,共16页
To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the j... To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions.The overall model is benchmarked under various impingement angles, jet momentum and offcenter ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines. 展开更多
关键词 Combustion chamber Doublet impinging injector Impingement spray model Lagrangian method Liquid rocket engine
原文传递
Potential of secondary aerosol formation from Chinese gasoline engine exhaust
4
作者 Zhuofei Du Min Hu +12 位作者 Jianfei Peng Song Guo Rong Zheng Jing Zheng Dongjie Shang Yanhong Qin He Niu Mengren Li Yudong Yang Sihua Lu Yusheng Wu Min Shao Shijin Shuai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期348-357,共10页
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aeroso... Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. 展开更多
关键词 Port fuel injection Gasoline engine exhaust Secondary aerosol formation chamber simulation Secondary organic aerosol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部