Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width...Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width and biomass chronologies across a range of elevations in the subalpine forests on the eastern slope of the Changbai Mountains.We used dendroclimatic analyses to study key factors limiting radial growth in L.olgensis and its variation with elevation.The statistical characteristics of chronologies suggested that elevation is a determinant of tree growth patterns in the study area.Response function analysis of chronologies with climate factors indicated that climate–growth relationships changed with increasing elevation:tree growth at high elevation was strongly limited by June temperatures of the previous year,and as elevation decreases,the importance of temperature decreased;tree radial growth at mid-elevation was mainly controlled by precipitation towards the end of the growing season of the current year.Biomass chronologies reflected a stronger climatic signal than tree-ring width chronologies.Spatial correlation with gridded climate data revealed that our chronologies contained a strong regional temperature signal for northeast China.Trees growing below timberline appeared to be more sensitive to climate,thus optimal sites for examining growth trends as a function of climate variation are considered to be just below timberline.Our study objective was to provide information for more accurate prediction of the growth response of L.olgensis to future climate change on the eastern slope of the Changbai Mountains,and to provide information for future climate reconstructions using this tree species in humid and semi humid regions.展开更多
In recent years, herbaceous species such as Deyeuxia angustifolia (Kom.) Y. L. Chang has invaded alpine tundra regions of the western slope of the Changbai Mountains. Because atmospheric nitrogen deposition is predi...In recent years, herbaceous species such as Deyeuxia angustifolia (Kom.) Y. L. Chang has invaded alpine tundra regions of the western slope of the Changbai Mountains. Because atmospheric nitrogen deposition is predicted to increase under a warming climate and D. angustifolia is sensitive to nitrogen addition, field experiments were conducted from 2010 to 2013 to determine the effect of increased nitrogen deposition on the mechanisms of D. angustifolia invasion. The goal of this study is to evaluate the impact of increased nitrogen deposition on the changes in alpine tundra vegetation (consisting mostly of Rhododendron chrysanthum Pall. and Vaccinium uliginosum Linn.). The results showed that: 1) simulated nitrogen deposition affected overall characteristics and structure of R. chrysanthum and E uliginosum communities and had a positive impact on the growth of tundra vegetation invaded by 1). angustifolia; 2) R. chrysanthum was more resistant to invasion by D. angustifolia than V.. uliginosum; 3) simulated nitrogen deposition could improve the growth and enhance the competitiveness of D. angustifolia, which was gradually replacing R. chrysanthum and V. uliginosum and might become the dominant species in the system in future, transforming alpine tundra into alpine meadow in the Chanebai Mountains.展开更多
Element cycling in the dominant plant communities including Rh. aureum, Rh. redowskianum and Vaccinium uliginosum in the Alpine tundra zone of Changbai Mountains in northeast China was studied. The results indicate th...Element cycling in the dominant plant communities including Rh. aureum, Rh. redowskianum and Vaccinium uliginosum in the Alpine tundra zone of Changbai Mountains in northeast China was studied. The results indicate that the amount of elements from litter decomposition was less than that of the plant uptake from soil, but that from plant uptake was higher than that in soil with mineralization process released. On the other hand, in the open system including precipitation input and soil leaching output, because of great number of elements from precipitation into the open system, the element cycling(except N, P) in the Alpine tundra ecosystem was in a dynamic balance. In this study, it was also found that different organ of plants had significant difference in accumulating elements. Ca, Mg, P and N were accumulated more obviously in leaves, while Fe was in roots. The degree of concentration of elements in different tissues of the same organ of the plants also was different, a higher concentration of Ca, Mg, P and N in mesophyll than in nerve but Fe was in a reversed order. The phenomenon indicates (1) a variety of biochemical functions of different elements, (2) the elements in mesophyll were with a shorter turnover period than those in nerve or fibre, but higher utilization rate for plant. Therefore, this study implies the significance of keeping element dynamic balance in the alpine tundra ecosystem of Changbai Mountains.展开更多
The grain-size distribution characteristics and grain-size parameters of sediment in two vertical sections of Daniugou peatland in the Changbai Mountains were systematically investigated.A comparative analysis of the ...The grain-size distribution characteristics and grain-size parameters of sediment in two vertical sections of Daniugou peatland in the Changbai Mountains were systematically investigated.A comparative analysis of the sediment granularity using a discriminative function with Hongyuan peat,red clay,loess-paleosol,fluvial deposit as well as lacustrine deposit was also conducted.It turns out that the vertical section of Daniugou peat ash is primarily constituted by clay and silt particles,and the content of sand is relatively small.Grain-size frequency curves generally show a single-peak modality while a bimodal pattern is detected in the upper layer.The grain-size component and peak pattern of grain-size frequency curves also illustrate that peat ash materials were transported to the peatland by long-range aeolian dust during the deposition process,while there existed short-distance dust influence in peat deposition of the upper layer.Comparisons of grain-size parameters and the discriminative Y-value of Daniugou peat ash with those of typical aeolian sediments show close similarities,suggesting the possibility that atmospheric dust transport processes were involved in the accumulation of peat again.Moreover,the variations of grain-size distribution suggest the local environmental deterioration which is just the driving force of local dust elevation.Grain-size analysis of peatland sediment is demonstrated to be one effective method to extract information about regional and global environmental evolution,and more attention should be paid to current local ecological environment and to seeking a balance between economic development and environmental protection in Northeast China.展开更多
The acidity regimes of representative soils on the north slope of the Changbai Mountains were examined through determinations of PH and pCa of the soil paste as well as in-site determinations. For soils under broad-le...The acidity regimes of representative soils on the north slope of the Changbai Mountains were examined through determinations of PH and pCa of the soil paste as well as in-site determinations. For soils under broad-leaf forest or broad-leaf-Korean pine forest, the pH decreased from the litter to lower layers gradually until it did not change or decreased further slightly. For soils under coniferous forest or Ermans birch forest,there was a minimum in pH at a depth of 3~6 cm where the content of humus was high. The pCa increased gradually from the soil surface downward to a constant value. The lime potential (pH-0.5pCa) showed a similar trend as the PH in its distribution. For a given soil, the measured pH value of the thick paste, ranging from 4.5 to 5.5, was lower by about 0.5 units than the value determined by the conventional method with a water to soil ratio of 5:1. The PH determined in site was even lower. It was found that there was a fairly close relationship between soil acidity and the type of vegetation. The pH showed a trend of decreasing from soils under broad-leaf forest through broad-leaf-conifer mixed forest and coniferous forest to Ermans birch forest, and the pCa showed an opposite trend in variation.展开更多
Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this m...Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this model with SPOT/NDVI data,three key vegetation phenology metrics,the start of growing season (SOS),the end of growing season (EOS) and the length of growing season (LOS),were extracted and mapped in the Changbai Mountains,and the relationship between the key phenology metrics and elevation were established.Results show that average SOS of forest,cropland and grassland in the Changbai Mountains are on the 119th,145th,and 133rd day of year,respectively.The EOS of forest and grassland are similar,with the average on the 280th and 278th,respectively.In comparison,average EOS of the cropland is relatively earlier.The LOS of forest is mainly from the 160th to 180th,that of the grassland extends from the 140th to the 160th,and that of cropland stretches from the 110th to the 130th.As the latitude increases for the same land cover in the study area,the SOS significantly delays and the EOS becomes earlier.The SOS delays approximately three days as the elevation increases 100 m in the areas with elevation higher than 900 m above sea level (a.s.l.).The EOS is slightly earlier as the elevation increases especially in the areas with elevation below 1200 m a.s.l.The LOS shortens approximately four days as the elevation increases 100 m in the areas with elevation higher than 900 m a.s.l.The relationships between vegetation phenology metrics and elevation may be greatly influenced by the land covers.Validation by comparing with the field data and previous research results indicates that the improved logistic model is reliable and effective for extracting vegetation phenology metrics.展开更多
Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the n...Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows: 1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38℃/10 yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.展开更多
In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (...In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (T0, control), 15% (T1, low intensity), 35% (T2, moderate intensity), and 100% (T3, clear-cutting), and examined the impacts of logging intensity on composition and structure of these stands. Results showed that there were no significant differences between To and T1 for all structural characteristics, except for density of seeding and large trees. The mean diameter at breast height (DBH, 1.3 m above the ground), stem density and basal area of large trees in T2 were significantly lower than in To, while the density of seedlings and saplings were significantly higher in T2 than in To. Structural characteristics in T3 were entirely different from To. Dominant tree species in primary BKF comprised 93%, 85%, 45% and 10% of the total basal area in T0, T1, T2 and T3, respectively. Three community similarity indices, the Jaccard's similarity coefficient (Cj); the Morisita-Hom index (CMH); and the Bray-Curtis index (CN), were the highest for T0 and T1, followed by T0 and T2, and T0 and T3, in generally. These results suggest that effects of harvesting on forest composition and structure are related to logging intensities. Low intensity harvesting is conductive to preserving forest structure and composition, allowing it to recover in a short time period. The regime characterized by low logging intensity and short rotations appears to be a sustainable harvesting method for BKF on the Changbai Mountains.展开更多
Seed long-distance dispersal(LDD) events are typically rare, but are important in the population processes that determine large-scale forest changes and the persistence of species in fragmented landscapes. However, pr...Seed long-distance dispersal(LDD) events are typically rare, but are important in the population processes that determine large-scale forest changes and the persistence of species in fragmented landscapes. However, previous studies focused on species dispersed via animal-mediated LDD, and ignored those dispersed by wind. The aim of this study was to assess the effects of canopy openness, edge, seed source, and patch tree density on the LDD of seeds by wind in forest. We collected birch seeds, a typical wind-dispersed species, throughout a larch plantation. We then assessed the relationship between birch LDD and each factor that may influence LDD of seeds by wind including distance to edge, canopy openness size, distance to mature forest, and the tree density of the larch plantation. We used univariate linear regression analysis to assess the influence of those factors on birch LDD, and partial correlations to calculate the contribution of each factor to LDD. The results showed that both canopy openness and edge had significant influences on birch LDD. Specifically, a negative relationship was observed between distance to edge and birch LDD, whereas there was a positive correlation between canopy openness size and LDD. In contrast, the distance to the mature forest was not correlated with birch LDD. Our results suggest that patch tree density could potently affect the probability of LDD by wind vectors, which provides novel and revealing insights regarding the effect of fragmentation on wind dynamics. The data also provide compelling evidence for the previously undocumented effect of habitat fragmentation on wind-dispersed organisms. As such, these observations will facilitate reasonable conservation planning, which requires a detailed understanding of the mechanisms by which patch properties hamper the delivery of seeds of wind-dispersed plants to fragmented areas.展开更多
The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we ...The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea(Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis(PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by p H on the Changbai Mountains, besides p H, other soil features such as NO3–-N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.展开更多
The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree...The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.展开更多
According to the glacial landforms and deposits with the optically stimulated luminescence (OSL)dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial...According to the glacial landforms and deposits with the optically stimulated luminescence (OSL)dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura's formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation-area ratio (AAR), maximum elevation of lateral moraines (MELM), toe-to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250-2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The/kElP, values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwan Residents and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious.展开更多
The Changbai Mountains and the Appalachian Mountains have similar spatial contexts.The elevation,latitude,and moisture gradients of both mountain ranges offer regional insight for investigating the vegetation dynamics...The Changbai Mountains and the Appalachian Mountains have similar spatial contexts.The elevation,latitude,and moisture gradients of both mountain ranges offer regional insight for investigating the vegetation dynamics in eastern Eurasia and eastern North America.We determined and compared the spatial patterns and temporal trends in the normalized difference vegetation index(NDVI)in the Changbai Mountains and the Appalachian Mountains using time series data from the Global Inventory Modeling and Mapping Studies 3^(rd) generation dataset from 1982 to 2013.The spatial pattern of NDVI in the Changbai Mountains exhibited fragmentation,whereas NDVI in the Appalachian Mountains decreased from south to north.The vegetation dynamics in the Changbai Mountains had an insignificant trend at the regional scale,whereas the dynamics in the Appalachian Mountains had a significant increasing trend.NDVI increased in 55% of the area of the Changbai Mountains and in 95% of the area of the Appalachian Mountains.The peak NDVI occurred one month later in the Changbai Mountains than in the Appalachian Mountains.The results revealed a significant increase in NDVI in autumn in both mountain ranges.The climatic trend in the Changbai Mountains included warming and decreased precipitation,and whereas that in the Appalachian Mountains included significant warming and increased precipitation.Positive and negative correlations existed between NDVI and temperature and precipitation,respectively,in both mountain ranges.Particularly,the spring temperature and NDVI exhibited a significant positive correlation in both mountain ranges.The results of this study suggest that human actives caused the differences in the spatial patterns of NDVI and that various characteristics of climate change and intensity of human actives dominated the differences in the NDVI trends between the Changbai Mountains and the Appalachian Mountains.Additionally,the vegetation dynamics of both mountain ranges were not identical to those in previous broader-scale studies.展开更多
Ongoing climate changes have a direct impact on forest growth;they also affect natural fire regimes,with further implications for forest composition.Understanding of how these will affect forests on decadal-to-centenn...Ongoing climate changes have a direct impact on forest growth;they also affect natural fire regimes,with further implications for forest composition.Understanding of how these will affect forests on decadal-to-centennial timescales is limited.Here we use reconstructions of past vegetation,fire regimes and climate during the Holocene to examine the relative importance of changes in climate and fire regimes for the abundance of key tree species in northeastern China.We reconstructed vegetation changes and fire regimes based on pollen and charcoal records from Gushantun peatland.We then used generalized linear modelling to investigate the impact of reconstructed changes in summer temperature,annual precipitation,background levels of fire,fire frequency and fire magnitude to identify the drivers of decadal-to-centennial changes in forest openness and composition.Changes in climate and fire regimes have independent impacts on the abundance of the key tree taxa.Climate variables are generally more important than fire variables in determining the abundance of individual taxa.Precipitation is the only determinant of forest openness,but summer temperature is more important than precipitation for individual tree taxa with warmer summers causing a decrease in cold-tolerant conifers and an increase in warmth-demanding broadleaved trees.Both background level and fire frequency have negative relationships with the abundance of most tree taxa;only Pinus increases as fire frequency increases.The magnitude of individual fires does not have a significant impact on species abundance on this timescale.Both climate and fire regime characteristics must be considered to understand changes in forest composition on the decadal-to-centennial timescale.There are differences,both in sign and magnitude,in the response of individual tree species to individual drivers.展开更多
The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from differen...The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from different vertical vegetation zones on the northern slope of the Changbai Mountains,Northeast China in August 2009,and phytoliths in the soil samples were extracted by using wet oxidation method and identified with Motic 2.0 microscope in laboratory.The results show that phytoliths are abundant in the topsoils of the study area.The herbal phytoliths are primarily composed of elongated,tooth-shaped,point-shaped and hat-shaped phytoliths,as well as a small amount of fan-shaped and square-shaped ones.The elongated,tooth-shaped,point-shaped and hat-shaped phytoliths are representative of cold climate,while fan-shaped and square-shaped ones are representative of warm and humid climate.In the conifer broadleaved mixed forest zone,coniferous forest zone and broadleaf forest zone,there are close correlations between vegetation and woody phytoliths in the topsoils,indicating that the woody plants of a region can be reconstructed from the woody phytolith assemblages in the topsoils.Meanwhile,the topsoil phytolith assemblages can also be used to reconstruct the understory herbs effectively.The phytolith assemblages in the topsoils of the forest community and herbal community differ significantly,which can help indicate the historical location of the timberline.展开更多
The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign dev...The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign development of its green food industry. With huge market demands at home and abroad, it is the urgent problem how to improve marketization process of green food resources and transfer the resources superiority into the market superiority in the region. According to the investigation, this paper analyzed the status quo and the cause of formation of low-marketization with the method of combining comparative research and practice research. It pointed out that necessary condition of marketization of green food resources in the forest region, such as strategy, economic environment, marketization allocation of sci-tech resources, etc. should be established. Furthermore, the concrete strategies of marketization of green food resources in the region such as market location, strategies of objective markets, combined strategy of marketing, etc. were advanced.展开更多
Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid devel...Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology,space monitoring of volcanic activities has already become possible,particularly in the application of thermal infrared remote sensing. The paper,through the detailed analysis of geothermal anomaly factors such as heat radiation,heat conduction and convection,depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed,and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also,a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally,some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.展开更多
The broad-leaved Korean pine(Pinus koraiensis) forest is one of the most biodiverse zonal communities in the North Temperate Zone and an important habitat for many endangered species.Broad-leaved Korean pine forests(B...The broad-leaved Korean pine(Pinus koraiensis) forest is one of the most biodiverse zonal communities in the North Temperate Zone and an important habitat for many endangered species.Broad-leaved Korean pine forests(BKPFs) are shrinking quickly due to deforestation and rapid urbanization. Thus, scientific protection strategies are urgently needed to change this status. Changbai Mountains contains one of the largest BKPFs and is considered a priority biodiversity conservation area in China. Guided by systematic conservation planning(SCP) methods and procedures, we chose representative species and communities in BKPFs ecosystem as priority conservation objects, and set quantitative conservation target, which is in the light of the biodiversity characteristic of BKPFs. The watershed area is used as planning unit. We used CPlan software to calculate the irreplaceability(Ir)value of each planning unit and the contribution value(Ti) of each conservation object to(1) assess the conservation efficiency;(2) identify the conservation gap of the existing conservation network. Then wecalculated a human disturbance index(HDI) for planning units in the conservation gaps and combine this with the Ir value to design three conservation scenarios to optimize the conservation network.Results show that planning units with high conservation value 14.16% of the total area, with3084.36 km2 were covered by the existing conservation network. 79.28% of planning units with high conservation value have not been protected which were concentrated mainly in the eight gap areas.Only 25.3% of protection objects achieved their conservation target with the existing conservation network. Conservation efficiency is low. Three conservation scenarios are constituted, each prioritizing a different aim:(1) ecological value;(2)species rescue; and(3) economical avoidance. The three conservation schemes potentially enable 93%,88% and 51% of conservation objects, respectively, to achieve identified conservation targets, thereby improving conservation efficiency significantly.展开更多
The Changbai Mountains are located within the boundaries of Antu County, Fusong County and Changbai County of Jilin City of Jilin Province. They cover a total area of more than 200,000 hectares and is one of the large...The Changbai Mountains are located within the boundaries of Antu County, Fusong County and Changbai County of Jilin City of Jilin Province. They cover a total area of more than 200,000 hectares and is one of the largest nature preserves in China. There are abundant species of living things, such as Dongbei Tiger, sika, sable展开更多
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni...Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
基金supported by the China Public Welfare Forest Project(No.200804001)
文摘Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width and biomass chronologies across a range of elevations in the subalpine forests on the eastern slope of the Changbai Mountains.We used dendroclimatic analyses to study key factors limiting radial growth in L.olgensis and its variation with elevation.The statistical characteristics of chronologies suggested that elevation is a determinant of tree growth patterns in the study area.Response function analysis of chronologies with climate factors indicated that climate–growth relationships changed with increasing elevation:tree growth at high elevation was strongly limited by June temperatures of the previous year,and as elevation decreases,the importance of temperature decreased;tree radial growth at mid-elevation was mainly controlled by precipitation towards the end of the growing season of the current year.Biomass chronologies reflected a stronger climatic signal than tree-ring width chronologies.Spatial correlation with gridded climate data revealed that our chronologies contained a strong regional temperature signal for northeast China.Trees growing below timberline appeared to be more sensitive to climate,thus optimal sites for examining growth trends as a function of climate variation are considered to be just below timberline.Our study objective was to provide information for more accurate prediction of the growth response of L.olgensis to future climate change on the eastern slope of the Changbai Mountains,and to provide information for future climate reconstructions using this tree species in humid and semi humid regions.
基金Special Fund of National Seismological Bureau,China(No.201208005)National Natural Science Foundation of China(No.41171072,41101523)
文摘In recent years, herbaceous species such as Deyeuxia angustifolia (Kom.) Y. L. Chang has invaded alpine tundra regions of the western slope of the Changbai Mountains. Because atmospheric nitrogen deposition is predicted to increase under a warming climate and D. angustifolia is sensitive to nitrogen addition, field experiments were conducted from 2010 to 2013 to determine the effect of increased nitrogen deposition on the mechanisms of D. angustifolia invasion. The goal of this study is to evaluate the impact of increased nitrogen deposition on the changes in alpine tundra vegetation (consisting mostly of Rhododendron chrysanthum Pall. and Vaccinium uliginosum Linn.). The results showed that: 1) simulated nitrogen deposition affected overall characteristics and structure of R. chrysanthum and E uliginosum communities and had a positive impact on the growth of tundra vegetation invaded by 1). angustifolia; 2) R. chrysanthum was more resistant to invasion by D. angustifolia than V.. uliginosum; 3) simulated nitrogen deposition could improve the growth and enhance the competitiveness of D. angustifolia, which was gradually replacing R. chrysanthum and V. uliginosum and might become the dominant species in the system in future, transforming alpine tundra into alpine meadow in the Chanebai Mountains.
基金The National Natural Science Foundation of China(No. 90211003) and the Innovation Program of the Chinese Acdemy of Sciences(No. KZCX3 SW 332)
文摘Element cycling in the dominant plant communities including Rh. aureum, Rh. redowskianum and Vaccinium uliginosum in the Alpine tundra zone of Changbai Mountains in northeast China was studied. The results indicate that the amount of elements from litter decomposition was less than that of the plant uptake from soil, but that from plant uptake was higher than that in soil with mineralization process released. On the other hand, in the open system including precipitation input and soil leaching output, because of great number of elements from precipitation into the open system, the element cycling(except N, P) in the Alpine tundra ecosystem was in a dynamic balance. In this study, it was also found that different organ of plants had significant difference in accumulating elements. Ca, Mg, P and N were accumulated more obviously in leaves, while Fe was in roots. The degree of concentration of elements in different tissues of the same organ of the plants also was different, a higher concentration of Ca, Mg, P and N in mesophyll than in nerve but Fe was in a reversed order. The phenomenon indicates (1) a variety of biochemical functions of different elements, (2) the elements in mesophyll were with a shorter turnover period than those in nerve or fibre, but higher utilization rate for plant. Therefore, this study implies the significance of keeping element dynamic balance in the alpine tundra ecosystem of Changbai Mountains.
基金Under the auspices of National Natural Science Foundation of China (No 40871089, 40830535)State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment, Chinese Academy of Sciences (No SKLLQG0910)
文摘The grain-size distribution characteristics and grain-size parameters of sediment in two vertical sections of Daniugou peatland in the Changbai Mountains were systematically investigated.A comparative analysis of the sediment granularity using a discriminative function with Hongyuan peat,red clay,loess-paleosol,fluvial deposit as well as lacustrine deposit was also conducted.It turns out that the vertical section of Daniugou peat ash is primarily constituted by clay and silt particles,and the content of sand is relatively small.Grain-size frequency curves generally show a single-peak modality while a bimodal pattern is detected in the upper layer.The grain-size component and peak pattern of grain-size frequency curves also illustrate that peat ash materials were transported to the peatland by long-range aeolian dust during the deposition process,while there existed short-distance dust influence in peat deposition of the upper layer.Comparisons of grain-size parameters and the discriminative Y-value of Daniugou peat ash with those of typical aeolian sediments show close similarities,suggesting the possibility that atmospheric dust transport processes were involved in the accumulation of peat again.Moreover,the variations of grain-size distribution suggest the local environmental deterioration which is just the driving force of local dust elevation.Grain-size analysis of peatland sediment is demonstrated to be one effective method to extract information about regional and global environmental evolution,and more attention should be paid to current local ecological environment and to seeking a balance between economic development and environmental protection in Northeast China.
文摘The acidity regimes of representative soils on the north slope of the Changbai Mountains were examined through determinations of PH and pCa of the soil paste as well as in-site determinations. For soils under broad-leaf forest or broad-leaf-Korean pine forest, the pH decreased from the litter to lower layers gradually until it did not change or decreased further slightly. For soils under coniferous forest or Ermans birch forest,there was a minimum in pH at a depth of 3~6 cm where the content of humus was high. The pCa increased gradually from the soil surface downward to a constant value. The lime potential (pH-0.5pCa) showed a similar trend as the PH in its distribution. For a given soil, the measured pH value of the thick paste, ranging from 4.5 to 5.5, was lower by about 0.5 units than the value determined by the conventional method with a water to soil ratio of 5:1. The PH determined in site was even lower. It was found that there was a fairly close relationship between soil acidity and the type of vegetation. The pH showed a trend of decreasing from soils under broad-leaf forest through broad-leaf-conifer mixed forest and coniferous forest to Ermans birch forest, and the pCa showed an opposite trend in variation.
基金Under the auspices of Major State Basic Research Development Program of China (No.2009CB426305)Cultivation Foundation of Science and Technology Innovation Platform of Northeast Normal University (No.106111065202)
文摘Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this model with SPOT/NDVI data,three key vegetation phenology metrics,the start of growing season (SOS),the end of growing season (EOS) and the length of growing season (LOS),were extracted and mapped in the Changbai Mountains,and the relationship between the key phenology metrics and elevation were established.Results show that average SOS of forest,cropland and grassland in the Changbai Mountains are on the 119th,145th,and 133rd day of year,respectively.The EOS of forest and grassland are similar,with the average on the 280th and 278th,respectively.In comparison,average EOS of the cropland is relatively earlier.The LOS of forest is mainly from the 160th to 180th,that of the grassland extends from the 140th to the 160th,and that of cropland stretches from the 110th to the 130th.As the latitude increases for the same land cover in the study area,the SOS significantly delays and the EOS becomes earlier.The SOS delays approximately three days as the elevation increases 100 m in the areas with elevation higher than 900 m above sea level (a.s.l.).The EOS is slightly earlier as the elevation increases especially in the areas with elevation below 1200 m a.s.l.The LOS shortens approximately four days as the elevation increases 100 m in the areas with elevation higher than 900 m a.s.l.The relationships between vegetation phenology metrics and elevation may be greatly influenced by the land covers.Validation by comparing with the field data and previous research results indicates that the improved logistic model is reliable and effective for extracting vegetation phenology metrics.
基金Under the auspices of National Natural Science Foundation of China(No.41571078,41171072)Open Foundation of Changbai Scientific Research Academy(No.201501)
文摘Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows: 1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38℃/10 yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.
基金National Key Technologies Research and Development Program of China(No.2012BAD22B04)
文摘In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (T0, control), 15% (T1, low intensity), 35% (T2, moderate intensity), and 100% (T3, clear-cutting), and examined the impacts of logging intensity on composition and structure of these stands. Results showed that there were no significant differences between To and T1 for all structural characteristics, except for density of seeding and large trees. The mean diameter at breast height (DBH, 1.3 m above the ground), stem density and basal area of large trees in T2 were significantly lower than in To, while the density of seedlings and saplings were significantly higher in T2 than in To. Structural characteristics in T3 were entirely different from To. Dominant tree species in primary BKF comprised 93%, 85%, 45% and 10% of the total basal area in T0, T1, T2 and T3, respectively. Three community similarity indices, the Jaccard's similarity coefficient (Cj); the Morisita-Hom index (CMH); and the Bray-Curtis index (CN), were the highest for T0 and T1, followed by T0 and T2, and T0 and T3, in generally. These results suggest that effects of harvesting on forest composition and structure are related to logging intensities. Low intensity harvesting is conductive to preserving forest structure and composition, allowing it to recover in a short time period. The regime characterized by low logging intensity and short rotations appears to be a sustainable harvesting method for BKF on the Changbai Mountains.
基金National Natural Science Foundation of China(No.31300526)National Key Technologies R&D Program of China(No.2012BAD22B04)Chinese Forest Ecosystem Research Network&GENE Award Funds on Ecological Paper
文摘Seed long-distance dispersal(LDD) events are typically rare, but are important in the population processes that determine large-scale forest changes and the persistence of species in fragmented landscapes. However, previous studies focused on species dispersed via animal-mediated LDD, and ignored those dispersed by wind. The aim of this study was to assess the effects of canopy openness, edge, seed source, and patch tree density on the LDD of seeds by wind in forest. We collected birch seeds, a typical wind-dispersed species, throughout a larch plantation. We then assessed the relationship between birch LDD and each factor that may influence LDD of seeds by wind including distance to edge, canopy openness size, distance to mature forest, and the tree density of the larch plantation. We used univariate linear regression analysis to assess the influence of those factors on birch LDD, and partial correlations to calculate the contribution of each factor to LDD. The results showed that both canopy openness and edge had significant influences on birch LDD. Specifically, a negative relationship was observed between distance to edge and birch LDD, whereas there was a positive correlation between canopy openness size and LDD. In contrast, the distance to the mature forest was not correlated with birch LDD. Our results suggest that patch tree density could potently affect the probability of LDD by wind vectors, which provides novel and revealing insights regarding the effect of fragmentation on wind dynamics. The data also provide compelling evidence for the previously undocumented effect of habitat fragmentation on wind-dispersed organisms. As such, these observations will facilitate reasonable conservation planning, which requires a detailed understanding of the mechanisms by which patch properties hamper the delivery of seeds of wind-dispersed plants to fragmented areas.
基金Wildlife Conservation and Management of National Forestry Bureau of China
文摘The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea(Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis(PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by p H on the Changbai Mountains, besides p H, other soil features such as NO3–-N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.
基金Special Fund of National Seismological Bureau,China(No.201208005)Doctorial Innovation Fund of Northeast Normal University(No.10SSXT133,2412013XS001)+1 种基金National Natural Science Foundation of China(No.41171038,41171072,41101523)Doctoral Fund of Ministry of Education of China(No.20120043110014)
文摘The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.
基金National Natural Science Foundation of China,No.40571016
文摘According to the glacial landforms and deposits with the optically stimulated luminescence (OSL)dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura's formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation-area ratio (AAR), maximum elevation of lateral moraines (MELM), toe-to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250-2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The/kElP, values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwan Residents and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious.
基金supported by the National Natural Science Foundation of China (Grant No. 41601438 and 41571078)the Fundamental Research Funds for the Central Universities (Grant No.2412016KJ026)the Foundation of the Education Department of Jilin Province in the 13~(th) Five-Year project (Grant No. JJKH20170916KJ)
文摘The Changbai Mountains and the Appalachian Mountains have similar spatial contexts.The elevation,latitude,and moisture gradients of both mountain ranges offer regional insight for investigating the vegetation dynamics in eastern Eurasia and eastern North America.We determined and compared the spatial patterns and temporal trends in the normalized difference vegetation index(NDVI)in the Changbai Mountains and the Appalachian Mountains using time series data from the Global Inventory Modeling and Mapping Studies 3^(rd) generation dataset from 1982 to 2013.The spatial pattern of NDVI in the Changbai Mountains exhibited fragmentation,whereas NDVI in the Appalachian Mountains decreased from south to north.The vegetation dynamics in the Changbai Mountains had an insignificant trend at the regional scale,whereas the dynamics in the Appalachian Mountains had a significant increasing trend.NDVI increased in 55% of the area of the Changbai Mountains and in 95% of the area of the Appalachian Mountains.The peak NDVI occurred one month later in the Changbai Mountains than in the Appalachian Mountains.The results revealed a significant increase in NDVI in autumn in both mountain ranges.The climatic trend in the Changbai Mountains included warming and decreased precipitation,and whereas that in the Appalachian Mountains included significant warming and increased precipitation.Positive and negative correlations existed between NDVI and temperature and precipitation,respectively,in both mountain ranges.Particularly,the spring temperature and NDVI exhibited a significant positive correlation in both mountain ranges.The results of this study suggest that human actives caused the differences in the spatial patterns of NDVI and that various characteristics of climate change and intensity of human actives dominated the differences in the NDVI trends between the Changbai Mountains and the Appalachian Mountains.Additionally,the vegetation dynamics of both mountain ranges were not identical to those in previous broader-scale studies.
基金This work was supported by the National Nature Science Foundation of China(awards 42,271,162,41,971,100)the Natural Science Foundation of Jilin Province(award 20220101149JC)the Scholarship Fund from China Scholarship Council(award 202,206,620,038).
文摘Ongoing climate changes have a direct impact on forest growth;they also affect natural fire regimes,with further implications for forest composition.Understanding of how these will affect forests on decadal-to-centennial timescales is limited.Here we use reconstructions of past vegetation,fire regimes and climate during the Holocene to examine the relative importance of changes in climate and fire regimes for the abundance of key tree species in northeastern China.We reconstructed vegetation changes and fire regimes based on pollen and charcoal records from Gushantun peatland.We then used generalized linear modelling to investigate the impact of reconstructed changes in summer temperature,annual precipitation,background levels of fire,fire frequency and fire magnitude to identify the drivers of decadal-to-centennial changes in forest openness and composition.Changes in climate and fire regimes have independent impacts on the abundance of the key tree taxa.Climate variables are generally more important than fire variables in determining the abundance of individual taxa.Precipitation is the only determinant of forest openness,but summer temperature is more important than precipitation for individual tree taxa with warmer summers causing a decrease in cold-tolerant conifers and an increase in warmth-demanding broadleaved trees.Both background level and fire frequency have negative relationships with the abundance of most tree taxa;only Pinus increases as fire frequency increases.The magnitude of individual fires does not have a significant impact on species abundance on this timescale.Both climate and fire regime characteristics must be considered to understand changes in forest composition on the decadal-to-centennial timescale.There are differences,both in sign and magnitude,in the response of individual tree species to individual drivers.
基金Under the auspices of National Natural Science Foundation of China (No 40971116)Major State Basic Research Development Program of China (No 2009CB426305)Technology Innovation Project of Northeast Normal University in Eleventh Five-Year Plan Period (No NENU-Stb07002)
文摘The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from different vertical vegetation zones on the northern slope of the Changbai Mountains,Northeast China in August 2009,and phytoliths in the soil samples were extracted by using wet oxidation method and identified with Motic 2.0 microscope in laboratory.The results show that phytoliths are abundant in the topsoils of the study area.The herbal phytoliths are primarily composed of elongated,tooth-shaped,point-shaped and hat-shaped phytoliths,as well as a small amount of fan-shaped and square-shaped ones.The elongated,tooth-shaped,point-shaped and hat-shaped phytoliths are representative of cold climate,while fan-shaped and square-shaped ones are representative of warm and humid climate.In the conifer broadleaved mixed forest zone,coniferous forest zone and broadleaf forest zone,there are close correlations between vegetation and woody phytoliths in the topsoils,indicating that the woody plants of a region can be reconstructed from the woody phytolith assemblages in the topsoils.Meanwhile,the topsoil phytolith assemblages can also be used to reconstruct the understory herbs effectively.The phytolith assemblages in the topsoils of the forest community and herbal community differ significantly,which can help indicate the historical location of the timberline.
基金Under the auspices of the Forestry Department of Jilin Province (No.08)
文摘The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign development of its green food industry. With huge market demands at home and abroad, it is the urgent problem how to improve marketization process of green food resources and transfer the resources superiority into the market superiority in the region. According to the investigation, this paper analyzed the status quo and the cause of formation of low-marketization with the method of combining comparative research and practice research. It pointed out that necessary condition of marketization of green food resources in the forest region, such as strategy, economic environment, marketization allocation of sci-tech resources, etc. should be established. Furthermore, the concrete strategies of marketization of green food resources in the region such as market location, strategies of objective markets, combined strategy of marketing, etc. were advanced.
文摘Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology,space monitoring of volcanic activities has already become possible,particularly in the application of thermal infrared remote sensing. The paper,through the detailed analysis of geothermal anomaly factors such as heat radiation,heat conduction and convection,depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed,and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also,a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally,some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.
基金supported by the 12th fiveyear National Science and Technology plan of China (2012BAC01B03)
文摘The broad-leaved Korean pine(Pinus koraiensis) forest is one of the most biodiverse zonal communities in the North Temperate Zone and an important habitat for many endangered species.Broad-leaved Korean pine forests(BKPFs) are shrinking quickly due to deforestation and rapid urbanization. Thus, scientific protection strategies are urgently needed to change this status. Changbai Mountains contains one of the largest BKPFs and is considered a priority biodiversity conservation area in China. Guided by systematic conservation planning(SCP) methods and procedures, we chose representative species and communities in BKPFs ecosystem as priority conservation objects, and set quantitative conservation target, which is in the light of the biodiversity characteristic of BKPFs. The watershed area is used as planning unit. We used CPlan software to calculate the irreplaceability(Ir)value of each planning unit and the contribution value(Ti) of each conservation object to(1) assess the conservation efficiency;(2) identify the conservation gap of the existing conservation network. Then wecalculated a human disturbance index(HDI) for planning units in the conservation gaps and combine this with the Ir value to design three conservation scenarios to optimize the conservation network.Results show that planning units with high conservation value 14.16% of the total area, with3084.36 km2 were covered by the existing conservation network. 79.28% of planning units with high conservation value have not been protected which were concentrated mainly in the eight gap areas.Only 25.3% of protection objects achieved their conservation target with the existing conservation network. Conservation efficiency is low. Three conservation scenarios are constituted, each prioritizing a different aim:(1) ecological value;(2)species rescue; and(3) economical avoidance. The three conservation schemes potentially enable 93%,88% and 51% of conservation objects, respectively, to achieve identified conservation targets, thereby improving conservation efficiency significantly.
文摘The Changbai Mountains are located within the boundaries of Antu County, Fusong County and Changbai County of Jilin City of Jilin Province. They cover a total area of more than 200,000 hectares and is one of the largest nature preserves in China. There are abundant species of living things, such as Dongbei Tiger, sika, sable
基金This study was supported by grant from the National Natu-ral Science Foundation of China (No. 30271068) the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ
文摘Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan