Microstructure evolution of AZ31 Mg alloy during change-channel angular extrusion (CCAE) was investigated. The grains of AZ31 Mg alloy were refined significantly from 500 mm to 15 mm after CCAE deformed at 523 K. Di...Microstructure evolution of AZ31 Mg alloy during change-channel angular extrusion (CCAE) was investigated. The grains of AZ31 Mg alloy were refined significantly from 500 mm to 15 mm after CCAE deformed at 523 K. Dislocations were induced at the initial stage of extrusion and they rearranged themselves to form dislocation boundaries and sub-grain boundaries during deformation. When the specimen through the horizontal change channel with the strain increased, the sub-boundaries evolved to high angle grain boundaries (HAGB). The process of grain refinement can be described as continuous dynamic recovery and recrystallization (CDRR).展开更多
基金Funded by the "Major State Basic Research Development Program of China(973 Program) (2007CB613700)
文摘Microstructure evolution of AZ31 Mg alloy during change-channel angular extrusion (CCAE) was investigated. The grains of AZ31 Mg alloy were refined significantly from 500 mm to 15 mm after CCAE deformed at 523 K. Dislocations were induced at the initial stage of extrusion and they rearranged themselves to form dislocation boundaries and sub-grain boundaries during deformation. When the specimen through the horizontal change channel with the strain increased, the sub-boundaries evolved to high angle grain boundaries (HAGB). The process of grain refinement can be described as continuous dynamic recovery and recrystallization (CDRR).