Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan...Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.展开更多
Land use/land cover (LULC) change analysis has become a unique approach in determining the extent of degradation of natural resources within a given period of time. Remote sensing and GIS techniques have proved to be ...Land use/land cover (LULC) change analysis has become a unique approach in determining the extent of degradation of natural resources within a given period of time. Remote sensing and GIS techniques have proved to be efficient tools for mapping and analyzing LULC changes over the last few decades. LULC change analysis has been carried out in Ruparel watershed which is situated in Alwar district, Eastern Rajasthan, India, based on visual image interpretation and change detection analysis of multi-temporal satellite data pertaining to IRS-P6 LISS III data of 2004 (Path-Row 95:52), IRS-P6 LISS III of 2014 (Path-Row 95:52) and IRS-R2A LISS III data of 2021. Visual image interpretation led to the delineation of 13 LULC classes using ArcGIS 10.5 software and include categories such as cultivated land, fallow land dense forest, open forest, degraded forest, open scrub, gullied/ravenous land, settlement/built-up land, River/waterbody, dry waterbody/dry river, plantation, barren/rocky/stony waste, and stone quarry. Results of the analysis depict significant LULC changes that have taken place in the area from 2004 to 2021. LULC categories such as cultivated land and settlement/built-up land have reported major changes in terms of their increase with 56.42 km<sup>2</sup> (4.63%) and 31.9 km<sup>2</sup> (2.63%) respectively primarily because of an increase in population. Likewise, the dense forest has reported a decrease of 33.78 km<sup>2</sup> (2.78%) in its area and has been converted into degraded forest i.e., 32.04 km<sup>2</sup> (2.64%) and open forest 2.85 km<sup>2</sup> (0.24%) due to increased human exploitation of forest resources and mining activities taking place within the forested area. The study area needs the immediate attention of policymakers and stakeholders as the study area being part of the National Capital Region (NCR) will see excessive in-migration of the population in coming years which will further deplete the precious resources in the area.展开更多
Nowadays, Southwestern Romania faces a large-scale aridization of the climate, revealed by the rise of temperatures and the decline of the amount of precipitations, with negative effects visible, among others, in the ...Nowadays, Southwestern Romania faces a large-scale aridization of the climate, revealed by the rise of temperatures and the decline of the amount of precipitations, with negative effects visible, among others, in the desiccation of forest vegetation. The present study means to identify the changes that occurred, quality-wise, in the past two decades (1990-2011) in forest vegetation in Southwestern Romania, and to establish the link between those changes and extant thermal stress in the region, whose particular features are high average annual and seasonal temperatures. In order to capture the evolution in time of cli- mate aridization, a first step consisted in using climate data, the temperature and precipitation parameters from three weather stations; these parameters were analyzed both individually and as aridity indexes (De Martonne and UNEP). In order to quantify the changes in forest vegetation, NDVI indexes were used and analyzed, starting off from Landsat satellite images, acquired at three distinct moments in time, 1990, 2000 and 2011. In order to identify the link between the changes of NDVI index values and regional thermal stress, a yardstick of climate changes, statistical correlations were established between the peak values of average annual temperatures, represented in space, and negative changes in the NDVI index, as revealed by the change-detection analysis. The results obtained indicated there is an obvious (statistically significant) connection between thermal stress and the desiccation (degradation) of forest species in the analyzed area, with false acacia (Robinia Pseudoacacia) the main species to be impacted.展开更多
文摘Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.
文摘Land use/land cover (LULC) change analysis has become a unique approach in determining the extent of degradation of natural resources within a given period of time. Remote sensing and GIS techniques have proved to be efficient tools for mapping and analyzing LULC changes over the last few decades. LULC change analysis has been carried out in Ruparel watershed which is situated in Alwar district, Eastern Rajasthan, India, based on visual image interpretation and change detection analysis of multi-temporal satellite data pertaining to IRS-P6 LISS III data of 2004 (Path-Row 95:52), IRS-P6 LISS III of 2014 (Path-Row 95:52) and IRS-R2A LISS III data of 2021. Visual image interpretation led to the delineation of 13 LULC classes using ArcGIS 10.5 software and include categories such as cultivated land, fallow land dense forest, open forest, degraded forest, open scrub, gullied/ravenous land, settlement/built-up land, River/waterbody, dry waterbody/dry river, plantation, barren/rocky/stony waste, and stone quarry. Results of the analysis depict significant LULC changes that have taken place in the area from 2004 to 2021. LULC categories such as cultivated land and settlement/built-up land have reported major changes in terms of their increase with 56.42 km<sup>2</sup> (4.63%) and 31.9 km<sup>2</sup> (2.63%) respectively primarily because of an increase in population. Likewise, the dense forest has reported a decrease of 33.78 km<sup>2</sup> (2.78%) in its area and has been converted into degraded forest i.e., 32.04 km<sup>2</sup> (2.64%) and open forest 2.85 km<sup>2</sup> (0.24%) due to increased human exploitation of forest resources and mining activities taking place within the forested area. The study area needs the immediate attention of policymakers and stakeholders as the study area being part of the National Capital Region (NCR) will see excessive in-migration of the population in coming years which will further deplete the precious resources in the area.
基金supported by the project Territorial Management Based on Growth Poles Theory (UEFICSU-PNII-Idei, 1950)the contract POSDRU/86/1.2/S/57462, strategic project "Optimization of the insertion process on the labour market concerning the geography graduates", co-financed by the European Social Fund, through the Sectoral Operational Programme for the Human Resources Development 2007–2013
文摘Nowadays, Southwestern Romania faces a large-scale aridization of the climate, revealed by the rise of temperatures and the decline of the amount of precipitations, with negative effects visible, among others, in the desiccation of forest vegetation. The present study means to identify the changes that occurred, quality-wise, in the past two decades (1990-2011) in forest vegetation in Southwestern Romania, and to establish the link between those changes and extant thermal stress in the region, whose particular features are high average annual and seasonal temperatures. In order to capture the evolution in time of cli- mate aridization, a first step consisted in using climate data, the temperature and precipitation parameters from three weather stations; these parameters were analyzed both individually and as aridity indexes (De Martonne and UNEP). In order to quantify the changes in forest vegetation, NDVI indexes were used and analyzed, starting off from Landsat satellite images, acquired at three distinct moments in time, 1990, 2000 and 2011. In order to identify the link between the changes of NDVI index values and regional thermal stress, a yardstick of climate changes, statistical correlations were established between the peak values of average annual temperatures, represented in space, and negative changes in the NDVI index, as revealed by the change-detection analysis. The results obtained indicated there is an obvious (statistically significant) connection between thermal stress and the desiccation (degradation) of forest species in the analyzed area, with false acacia (Robinia Pseudoacacia) the main species to be impacted.