期刊文献+
共找到9,664篇文章
< 1 2 250 >
每页显示 20 50 100
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
1
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites Thermal energy storage Electromagnetic interference shielding
下载PDF
Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change 被引量:1
2
作者 ZHAO Xuqin LUO Min +3 位作者 MENG Fanhao SA Chula BAO Shanhu BAO Yuhai 《Journal of Arid Land》 SCIE CSCD 2024年第1期46-70,共25页
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation... Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas. 展开更多
关键词 gross primary productivity(GPP) climate change warming aridification areas drought sensitivity cumulative effect duration(CED) Mongolian Plateau
下载PDF
A study on the simulation of carbon and water fluxes of Dangxiong alpine meadow and its response to climate change 被引量:1
3
作者 Lingyun He Lei Zhong +3 位作者 Yaoming Ma Yuting Qi Jie Liu Peizhen Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期22-27,共6页
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th... The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau. 展开更多
关键词 Carbon and water flux Water use efficiency Alpine meadow Biome-BGC model Climate change
下载PDF
Projected changes in extreme snowfall events over the Tibetan Plateau based on a set of RCM simulations 被引量:1
4
作者 Yuanhai Fu Xuejie Gao 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期3-9,共7页
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr... Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas. 展开更多
关键词 Extreme snowfall Regional climate model Tibetan plateau Climate change
下载PDF
Prevalence of vegetation browning in China’s drylands under climate change 被引量:1
5
作者 Li Fu Guolong Zhang +3 位作者 Jianping Huang Ming Peng Lei Ding Dongliang Han 《Geography and Sustainability》 CSCD 2024年第3期405-414,共10页
Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning ... Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning of vegetation remain scarce.In this study,we utilized the normalized difference vegetation index(NDVI)as an indicator of vegetation to investigate the trends of vegetation greening and browning(monotonic,interruption,and reversal)through the breaks for the additive season and trend(BFAST)method across China’s drylands from 1982 to 2022.It also reveals the impacts of ecological restoration programs(ERPs)and climate change on these vegetation trends.We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands.Greening trends mainly exhibits monotonic greening(29.8%)and greening with setback(36.8%),whereas browning shows a greening to browning reversal(19.2%).The increase rate of greening to browning reversal is 0.0342/yr,which is apparently greater than that of greening with setback,0.0078/yr.This research highlights that,under the background of widespread vegetation greening,vegetation browning is pro-gressively increasing due to the effects of climate change.Furthermore,the ERPs have significantly increased vegetation coverage,with the increase rate in 2000-2022 being twice as much as that of 1982-1999 in reveg-etation regions.Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances,which offset the efforts of ERPs. 展开更多
关键词 China’s drylands Ecological restoration programs Climate change Greening to browning reversal BFAST
下载PDF
Analysis of piezoelectric semiconductor fibers under gradient temperature changes 被引量:1
6
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
下载PDF
Timing theory integrated nursing combined behavior change integrated theory of nursing on primiparous influence 被引量:1
7
作者 Yan-Xia He Yang Lv +2 位作者 Ting-Ting Lan Fang Deng Yuan-Yuan Zhang 《World Journal of Clinical Cases》 SCIE 2024年第2期293-301,共9页
BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to e... BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life. 展开更多
关键词 Timing theory Behavior change PRIMIPARA Bad mood Quality of life
下载PDF
Differential response of radial growth and δ^(13)C in Qinghai spruce(Picea crassifolia) to climate change on the southern and northern slopes of the Qilian Mountains in Northwest China 被引量:1
8
作者 Li Qin Huaming Shang +4 位作者 Weiping Liu Yuting Fan Kexiang Liu Tongwen Zhang Ruibo Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期205-218,共14页
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q... Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change. 展开更多
关键词 Tree rings Qinghai spruce(Picea crassifolia Kom.) Stable carbon isotope(δ^(13)C) Qilian Mountains:Climate change
下载PDF
Quantitative contributions of climate change and human activities to vegetation dynamics in the Zoige Plateau from 2001 to 2020
9
作者 GAO Bing LIU Enqin +4 位作者 YANG Yang YANG Man YAO Yang GUAN Lei FENG Yiwen 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3031-3046,共16页
Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative... Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative contributions of climate change and human activities to these vegetation dynamics remain unclear.Therefore,clarifying how and why the vegetation on the Zoige Plateau changed can provide a scientific basis for the sustainable development of the region.Here,we investigate NDVI trends using the Normalized Difference Vegetation Index(NDVI)as an indicator of vegetation greenness and distinguish the relative effects of climate changes and human activities on vegetation changes by utilizing residual trend analysis and the Geodetector.We find a tendency of vegetation greening from 2001 to 2020,with significant greening accounting for 21.44%of the entire region.However,browning area expanded rapidly after 2011.Warmer temperatures are the primary driver of vegetation changes in the Zoige Plateau.Climatic variations and human activities were responsible for 65.57%and 34.43%of vegetation greening,and 39.14%and 60.86%of vegetation browning,respectively,with browning concentrated along the Yellow,Black and White Rivers.Compared to 2001-2010,the inhibitory effect of human activity and climate fluctuations on vegetation grew dramatically between 2011 and 2020. 展开更多
关键词 Vegetation change Climate change Residual trend analysis Geodetector Human activities Zoige plateau
下载PDF
Comprehending drivers of land use land cover change from 1999 to 2021 in the Pithoragarh District,Kumaon Himalaya,Uttarakhand,India
10
作者 Mahika PHARTIYAL Sanjeev SHARMA 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2394-2407,共14页
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an... The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region. 展开更多
关键词 Himalayan region Land use/land cover change Anthropogenic factors Climate change Socioecological system
下载PDF
Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022
11
作者 SUN Chao BAI Xuelian +2 位作者 WANG Xinping ZHAO Wenzhi WEI Lemin 《Journal of Arid Land》 SCIE CSCD 2024年第8期1044-1061,共18页
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime... Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins. 展开更多
关键词 vegetation variation climate change land use change normalized difference vegetation index(NDVI) enhanced vegetation index(EVI) Shiyang River Basin
下载PDF
Identification and effective regulation of scarb1 gene involved in pigmentation change in autotetraploid Carassius auratus
12
作者 Xi-Dan Xu Yue Zhou +9 位作者 Chong-Qing Wang Xu Huang Kun Zhang Xiao-Wei Xu Li-Wen He Xin-Yue Zhang Xin-Zhu Fu Ming Ma Qin-Bo Qin Shao-Jun Liu 《Zoological Research》 SCIE CSCD 2024年第2期381-397,共17页
The autotetraploid Carassius auratus(4nRR,4n=200,RRRR)is derived from whole-genome duplication of Carassius auratus red var.(RCC,2n=100,RR).In the current study,we demonstrated that chromatophores and pigment changes ... The autotetraploid Carassius auratus(4nRR,4n=200,RRRR)is derived from whole-genome duplication of Carassius auratus red var.(RCC,2n=100,RR).In the current study,we demonstrated that chromatophores and pigment changes directly caused the coloration and variation of 4nRR skin(red in RCC,brownish-yellow in4nRR).To further explore the molecular mechanisms underlying coloration formation and variation in 4nRR,we performed transcriptome profiling and molecular functional verification in RCC and 4nRR.Results revealed that scarb1,associated with carotenoid metabolism,underwent significant down-regulation in 4nRR.Efficient editing of this candidate pigment gene provided clear evidence of its significant role in RCC coloration.Subsequently,we identified four divergent scarb1 homeologs in 4nRR:two original scarb1 homeologs from RCC and two duplicated ones.Notably,three of these homeologs possessed two highly conserved alleles,exhibiting biased and allelespecific expression in the skin.Remarkably,after precise editing of both the original and duplicated scarb1homeologs and/or alleles,4nRR individuals,whether singly or multiply mutated,displayed a transition from brownishyellow skin to a cyan-gray phenotype.Concurrently,the proportional areas of the cyan-gray regions displayed a gene-dose correlation.These findings illustrate the subfunctionalization of duplicated scarb1,with all scarb1genes synergistically and equally contributing to the pigmentation of 4nRR.This is the first report concerning the functional differentiation of duplicated homeologs in an autopolyploidfish,substantiallyenrichingour understanding of coloration formation and change within this group of organisms. 展开更多
关键词 Autopolyploidization Coloration change scarb1 Functional differentiation Genetic changes
下载PDF
The multiple roles of crop structural change in productivity,nutrition and environment in China:A decomposition analysis
13
作者 Xiangyang Zhang Yumei Zhang Shenggen Fan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1763-1773,共11页
China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nut... China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs. 展开更多
关键词 CROP structural change land productivity NUTRITION carbon emissions
下载PDF
Changes of growth-climate relationships of Smith fir forests along an altitudinal gradient
14
作者 Jiacheng Zheng Jing Yang +3 位作者 Hengfeng Jia Lixin Lyu Jiayang Langzhen Qi-Bin Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期37-46,共10页
Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes ar... Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes are,however,not well understood.A vegetation survey and analyses of growth-climate relationships for Abies georgei var.Smithii(Smith fir)forests were carried along an altitudi-nal gradient from 3600 to 4200 m on Meili Snow Mountain,southeastern Tibetan Plateau.The results showed that the associations between growth and temperature have declined since the 1970s over the whole transect,while response to standardized precipitation-evapotranspiration indices(SPEI)strengthened in the mid-and lower-transect.Comparison between growth and vegetation data showed that tree growth was more sensitive to drought in stands with higher species richness and greater shrub cover.Drought stress on growth may be increased by heavy competition from shrub and herb layers.These results show the non-stationary nature of tree growth-climate associations and the linkage to for-est community structures.Vegetation components should be considered in future modeling and forecasting of forest dynamics in relation to climate changes. 展开更多
关键词 Climate change Tree rings Altitudinal gradient Community structure Plant diversity
下载PDF
Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors
15
作者 WANG Baoliang WANG Hongxiang +3 位作者 JIAO Xuyang HUANG Lintong CHEN Hao GUO Wenxian 《Journal of Arid Land》 SCIE CSCD 2024年第2期168-194,共27页
Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alte... Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River. 展开更多
关键词 Budyko theory hydrological regime attribution analysis ecological responses Yellow River climate change human activity RUNofF
下载PDF
Precipitation and anthropogenic activities regulate the changes of NDVI in Zhegucuo Valley on the southern Tibetan Plateau
16
作者 ZHAO Wanglin WANG Hengying +1 位作者 ZHANG Huifang ZHANG Lin 《Journal of Mountain Science》 SCIE CSCD 2024年第2期607-618,共12页
Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may... Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may provide important guidance for local government policy and grassland management.Using two of the most reliable satellite NDVI products(MODIS NDVI and SPOT NDVI),we evaluated the dynamic of grasslands in the Zhegucuo valley on the southern Tibetan Plateau from 2000 to 2020,and analyzed its driving factors and relative influences of climate change and anthropogenic activities.Here,the key indicators of climate change were assumed to be precipitation and temperature.The main results were:(1)the grassland NDVI in Zhegucuo valley did not reflect a significant temporal change during the last 21 years.The variation of precipitation during the early growing season(GSP)resembled that of NDVI,and the GSP was positively correlated with NDVI.At the pixel level,the partial correlation analysis showed that 37.79%of the pixels depicted a positive relationship between GSP and NDVI,while 11.32%of the pixels showed a negative relationship between temperature during the early growing season(GST)and NDVI.(2)In view of the spatial distribution,the areas mainly controlled by GSP were generally distributed in the southern part,while those affected by GST stood in the eastern part,mainly around the Zhegucuo lake where most population in Cuomei County settled down.(3)Decreasing NDVI trends were mainly occurred in alpine steppe at lower elevations rather than alpine meadow at higher elevations.(4)The residual trend(RESTREND)analysis further indicated that the anthropogenic activities played a more pivotal role in regulating the annual changes of NDVI rather than climate factors in this area.Future studies should pay more attention on climate extremes rather than the simple temporal trends.Also,the influence of human activities on alpine grassland needs to be accessed and fully considered in future sustainable management. 展开更多
关键词 Anthropogenic activities Climate change PRECIPITATION FENCING Vegetation degradation
下载PDF
Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change
17
作者 Jingcheng Wang Zhentong Liu +2 位作者 Wei Chen Hongliang Chen Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1540-1553,共14页
A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten st... A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence.The exposure of the molten steel was calculated using the coupled realizable k–εmodel and volume of fluid(VOF)model.The diffusion of dissolved oxygen was determined by solving the user-defined scalar(UDS)equation.Moreover,the user-defined function(UDF)was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position.The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed.Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel.However,the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish,thereby exacerbating the reoxidation phenomenon.In addition,the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed.When the inlet speed was 3.0 m·s^(-1)during ladle change,the molten steel with a high dissolved oxygen content exited the outlet in a short period,reaching a maximum dissolved oxygen content of 0.000525wt%.Conversely,when the inlet speed was 1.8 m·s^(-1),the maximum dissolved oxygen content was 0.000382wt%.The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality. 展开更多
关键词 TUNDISH ladle change REOXIDATION multiphase flow numerical simulation
下载PDF
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
18
作者 WANG Xingbo ZHANG Shuanghu TIAN Yiman 《Journal of Arid Land》 SCIE CSCD 2024年第4期461-482,共22页
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in... Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin. 展开更多
关键词 economic belt runoff change influencing assessment CLIMATE human activities
下载PDF
Projected impacts of climate change on the habitat of Xerophyta species in Africa
19
作者 Vincent Okelo Wanga Boniface KNgarega +9 位作者 Millicent Akinyi Oulo Elijah Mbandi Mkala Veronicah Mutele Ngumbau Guy Eric Onjalalaina Wyclif Ochieng Odago Consolata Nanjala Clintone Onyango Ochieng Moses Kirega Gichua Robert Wahiti Gituru Guang-Wan Hu 《Plant Diversity》 SCIE CAS CSCD 2024年第1期91-100,共10页
Climate change poses a serious long-term threat to biodiversity.To effectively reduce biodiversity loss,conservationists need to have a thorough understanding of the preferred habitats of species and the variables tha... Climate change poses a serious long-term threat to biodiversity.To effectively reduce biodiversity loss,conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution.Therefore,predicting the impact of climate change on speciesappropriate habitats may help mitigate the potential threats to biodiversity distribution.Xerophyta,a monocotyledonous genus of the family Velloziaceae is native to mainland Africa,Madagascar,and the Arabian Peninsula.The key drivers of Xerophyta habitat distribution and preference are unknown.Using 308 species occurrence data and eight environmental variables,the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past,current and future climate change scenarios.The results showed that the models had a good predictive ability(Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902),indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species.The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter(Bio9)and precipitation of the warmest quarter(Bio18).According to our models,tropical Africa has zones of moderate and high suitability for Xerophyta taxa,which is consistent with the majority of documented species localities.The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario,with most species experiencing a range loss greater than the range gain regardless of the climate scenario.The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts. 展开更多
关键词 AFRICA Climate change MaxEnt model Potential suitable distribution Velloziaceae Xerophyta
下载PDF
Prediction of the potential distribution and analysis of the freezing injury risk of winter wheat on the Loess Plateau under climate change
20
作者 Qing Liang Xujing Yang +9 位作者 Yuheng Huang Zhenwei Yang Meichen Feng Mingxing Qing Chao Wang Wude Yang Zhigang Wang Meijun Zhang Lujie Xiao Xiaoyan Song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2941-2954,共14页
Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predi... Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies. 展开更多
关键词 climate change scenarios winter wheat freezing injury risk DOWNSCALING MAXENT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部