To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen...To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.展开更多
A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and S...A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.展开更多
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite...The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.展开更多
The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforce...The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies,corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies,mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete,especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.展开更多
Signal processing approaches are widely used in the field of earthquake engineering,especially in the identification of structural modal parameters.Hilbert-Huang Transformation(HHT)is one new signal processing approac...Signal processing approaches are widely used in the field of earthquake engineering,especially in the identification of structural modal parameters.Hilbert-Huang Transformation(HHT)is one new signal processing approach,which can be used to identify the modal frequency,damping ratio,mode shape,even the interlayer stiffness of the shear-type structure,incorporating with Natural Excitation Technique(NExT)method to take information from the response records of the structure.The stiffness of the structure is of great importance to judge the loss of its bearing capacity after earthquake.However,all of modal parameters are required to calculate the stiffness of the structure by use of HHT and NExT,which means that the response records shall contain all of modal information.However,it has been found that the responses of the structure recorded only contain the former order modal information;even it is excited by earthquake.Therefore,it is necessary to found a formula(formulas)to calculate the stiffness only using limited modal parameters.In this paper,the calculation formulas of the interlayer stiffness of shear-type structure are derived by using of the flexibility method,which indicate that all of interlayer stiffnesses could be worked out as long as any one set of modal parameters is obtained.After that,Taking Sheraton-Universal Hotel subjected to North Bridge earthquake in 1994 as an example,HHT and NExT are used to identify its modal parameters,the derived formulas are used to calculate the interlayer stiffnesses,and their applicability and accuracy are verified.展开更多
基金supported by the National Natural Science Foundation Project(Nos.51966018 and 51466015)the Key Research&Development Program of Xinjiang(Grant No.2022B01003).
文摘To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.
基金National Natural Science Foundation of China(No.10405014)
文摘A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.
基金Project(51278104)supported by the National Natural Science Foundation of ChinaProject(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,China+1 种基金Project(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.
基金Project(50678064) supported by the National Natural Science Foundation of China
文摘The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies,corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies,mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete,especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.
文摘Signal processing approaches are widely used in the field of earthquake engineering,especially in the identification of structural modal parameters.Hilbert-Huang Transformation(HHT)is one new signal processing approach,which can be used to identify the modal frequency,damping ratio,mode shape,even the interlayer stiffness of the shear-type structure,incorporating with Natural Excitation Technique(NExT)method to take information from the response records of the structure.The stiffness of the structure is of great importance to judge the loss of its bearing capacity after earthquake.However,all of modal parameters are required to calculate the stiffness of the structure by use of HHT and NExT,which means that the response records shall contain all of modal information.However,it has been found that the responses of the structure recorded only contain the former order modal information;even it is excited by earthquake.Therefore,it is necessary to found a formula(formulas)to calculate the stiffness only using limited modal parameters.In this paper,the calculation formulas of the interlayer stiffness of shear-type structure are derived by using of the flexibility method,which indicate that all of interlayer stiffnesses could be worked out as long as any one set of modal parameters is obtained.After that,Taking Sheraton-Universal Hotel subjected to North Bridge earthquake in 1994 as an example,HHT and NExT are used to identify its modal parameters,the derived formulas are used to calculate the interlayer stiffnesses,and their applicability and accuracy are verified.