The purpose of this article is to identify the effect of land use pattern on rainfall runoff and runoff sediment relations in Zichang Watershed of the Loess Plateau. From 1986 to 1997, many farmlands changed into g...The purpose of this article is to identify the effect of land use pattern on rainfall runoff and runoff sediment relations in Zichang Watershed of the Loess Plateau. From 1986 to 1997, many farmlands changed into grassland or woodland, especially the farmland in steep slope positions or far away from the river. The change of land use pattern altered the rainfall runoff and runoff sediment relationships, and led to higher slope of trend curves(STCs) of annual rainfall runoff mass curve and runoff sediment mass curve in 1990s than that in 1980s. It is implied that more soil and water loss yielded in 1990s. In order to reduce soil loss, more attentions should be paid to land use pattern and some grass or other herbaceous filter strips should be built along rivers.展开更多
This study examined the temporal trends of runoff and sediment load and their differential response to human activities in the Lishui river,a tributary of the Yangtze river in southern China.The long-term observation ...This study examined the temporal trends of runoff and sediment load and their differential response to human activities in the Lishui river,a tributary of the Yangtze river in southern China.The long-term observation data at four gauging stations,generally involving two periods from 1954 to 1985 and from 2007 to 2011,were used.We detected no significant temporal trend for both the annual runoff volume(Q) and the annual suspended Sediment Load(SL) over more than 30 years before 1985.The flow duration curves and the Suspended Sediment Concentration(SSC) also hold constant before 1985.Compared with the period before 1985,SL has decreased by about 80% though Q remains unchanged for the period after 2007.Detailed examination shows that the flow duration curves after 2007 have changed with a significant decrease in the high-flow component,which acts as a major cause for the decreasing SL.In addition,SSC has decreased by several times,which also contributes to the decrease in SL after 2007.Both decreases in high-flow discharges and in SSC can be linked with recent human activities,mainly including vegetation establishment and dam constructions.The constant Q and the decreasing SL are also reported for the main stream of the Yangtze River and other major rivers in southern China,although they are orders of magnitude larger than our study area in drainage area size.The present study highlights the importance of high-flow discharges on SL and suggests that the use of SL is more appropriate to reflect environmental change than Q.展开更多
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil cons...As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield.展开更多
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation...The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.展开更多
Based on meteorologic data in Xixi Watershed from 1972 to 1979, the SWAT model was applied to simulate the response of runoff and sediment yield in Xixi Watershed to climate change under 24 kinds of climate change sce...Based on meteorologic data in Xixi Watershed from 1972 to 1979, the SWAT model was applied to simulate the response of runoff and sediment yield in Xixi Watershed to climate change under 24 kinds of climate change scenarios, and then the spatial and temporal distribution of change rates of the runoff and sediment were analyzed. The results showed that the runoff yield would increase with the increase of precipitation or decrease of temperature, and the sediment yield would increase with the increase of precipitation or increase of temperature; the runoff would be more sensitive to variations in precipitation than to variations in temperature, and precipitation change would lead to more obvious change in the run- off yield; the temporal distribution of change rates of the runoff and sediment yield would be uneven in the 12 months, and the variation trends of the two change rates in the 12 months would be accordant; the spatial distribution of change rates of the runoff and sediment yield would be uneven in the sub-watersheds, and the change rate of the runoff yield would be bigger in the sub-watersheds where the runoff yield in the basic period would be smaller. This study can provide decision-making basis for sustainable development of Jinjiang Basin.展开更多
The relation between runoff and sediment and land cover is investigated in the Cedar Creek Watershed (CCW), located in Northeastern Indiana, United States. The major land cover types in this watershed are cultivated...The relation between runoff and sediment and land cover is investigated in the Cedar Creek Watershed (CCW), located in Northeastern Indiana, United States. The major land cover types in this watershed are cultivated land, woodland and pasture /Conservation Reserve Program (CRP), which account for approximate 90 % of the total area in the region. Moreover, land use was changed tremendously from aooo to 9004, even without regarding the effect of the crop rotation system (corn & soybean). At least 49 % of land cover types were changed into other types in this period. The land cover types, ranking by changing area from high to low series, are rye, soybean, corn, woodland and pasture/CRP. The CCW is divided into 21 subwatersheds, and soil and water loss in each sub-watershed is computed by using Soil and Water Assessment Tool (SWAT). The results indicate that the variations in runoff and sediment have positive relation to the area of crops (especially corn and soybean); sediment is more sensitive to land cover changes than runoff; more heavy rainfall does not always mean more runoff because the combination of different land cover types always modify runoff coefficient; and rye, soybean and corn are the key land cover types, which affected the variation in runoff and sediment in the CCW.展开更多
In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering...In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering method were used to analyze the changes of runoff and sediment discharge and their driving factors in four hydrological stations along the Taohe River from 1957 to 2016.The results showed that the correlation between runoff and sediment of the four hydrological stations along the Taohe River was significant,and the correlation coefficient was 0.728-0.984.The runoff and sediment transport in the interval showed an increasing and decreasing trend.The decrease rate of runoff was 133.82%-216.17%higher than that of Xiabagou station,and the decrease rate of sediment transport was 250.49%-4766.33%higher than that of Xiabagou station.The mutation year of the Taohe River runoff occurred in 1986,and the maximum decrease was 35%.The water-sediment relationship curves of different periods showed that the sediment discharge of the four stations changed abruptly around 1990,and the maximum reduction before and after the mutation was up to 73%,and the sediment discharge in the river channel decreased significantly.The research showed that human activities were the main driving factors for the change of water-sediment relationship in the Taohe River.展开更多
This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectr...This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).展开更多
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human a...In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.展开更多
Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of th...Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.展开更多
Based on the 58 years monthly flow data (from 1956 to 2013) editing by Jingle hydrological station of Fen River and Shangjinyou station, data resources are used to analyze the annual and inter-annual changes from spat...Based on the 58 years monthly flow data (from 1956 to 2013) editing by Jingle hydrological station of Fen River and Shangjinyou station, data resources are used to analyze the annual and inter-annual changes from spatial and temporal scale by statistical methods, mainly annual spatial and temporal distribution, trend of inter-annual changes, cycle and mutation changes. The reasons of runoff into reservoir changes are deeply analyzed by annual precipitation data of catchments above Fenhe Reservoir 1956 to 2013 and the land and water reservation methods which are implemented recently. It shows that there is a significant decrease of the inter-annual run-off with main and second cycle periods, 23a and 13a respectively. Furthermore, it exists mutation point between 1970 and 1971 through runoff series. As for further analysis of the causes of Fenhe Reservoir runoff changes, it illustrates that the change of precipitation is the main reason the facilitate runoff changes. Also, the land and water reservation methods which are implemented in upstream of Fenhe Reservoir increase water storage capacity of soil, showing it non-ignorable effect to runoff changes.展开更多
The shrinkage of the Aral Sea,which is closely related to the Amu Darya River,strongly affects the sustainability of the local natural ecosystem,agricultural production,and human well-being.In this study,we used the B...The shrinkage of the Aral Sea,which is closely related to the Amu Darya River,strongly affects the sustainability of the local natural ecosystem,agricultural production,and human well-being.In this study,we used the Bayesian Estimator of Abrupt change,Seasonal change,and Trend(BEAST)model to detect the historical change points in the variation of the Aral Sea and the Amu Darya River and analyse the causes of the Aral Sea shrinkage during the 1950–2016 period.Further,we applied multifractal detrend cross-correlation analysis(MF-DCCA)and quantitative analysis to investigate the responses of the Aral Sea to the runoff in the Amu Darya River,which is the main source of recharge to the Aral Sea.Our results showed that two significant trend change points in the water volume change of the Aral Sea occurred,in 1961 and 1974.Before 1961,the water volume in the Aral Sea was stable,after which it began to shrink,with a shrinkage rate fluctuating around 15.21 km3/a.After 1974,the water volume of the Aral Sea decreased substantially at a rate of up to 48.97 km3/a,which was the highest value recorded in this study.In addition,although the response of the Aral Sea's water volume to its recharge runoff demonstrated a complex non-linear relationship,the replenishment of the Aral Sea by the runoff in the lower reaches of the Amu Darya River was identified as the dominant factor affecting the Aral Sea shrinkage.Based on the scenario analyses,we concluded that it is possible to slow down the retreat of the Aral Sea and restore its ecosystem by increasing the efficiency of agricultural water use,decreasing agricultural water use in the middle and lower reaches,reducing ineffective evaporation from reservoirs and wetlands,and increasing the water coming from the lower reaches of the Amu Darya River to the 1961–1973 level.These measures would maintain and stabilise the water area and water volume of the Aral Sea in a state of ecological restoration.Therefore,this study focuses on how human consumption of recharge runoff affects the Aral Sea and provides scientific perspective on its ecological conservation and sustainable development.展开更多
文摘The purpose of this article is to identify the effect of land use pattern on rainfall runoff and runoff sediment relations in Zichang Watershed of the Loess Plateau. From 1986 to 1997, many farmlands changed into grassland or woodland, especially the farmland in steep slope positions or far away from the river. The change of land use pattern altered the rainfall runoff and runoff sediment relationships, and led to higher slope of trend curves(STCs) of annual rainfall runoff mass curve and runoff sediment mass curve in 1990s than that in 1980s. It is implied that more soil and water loss yielded in 1990s. In order to reduce soil loss, more attentions should be paid to land use pattern and some grass or other herbaceous filter strips should be built along rivers.
基金funded by Special Foundation for Protection of Geoheritages in Zhangjiajie World GeoparkNational Natural Science Foundation of China(Grant No.41271306)
文摘This study examined the temporal trends of runoff and sediment load and their differential response to human activities in the Lishui river,a tributary of the Yangtze river in southern China.The long-term observation data at four gauging stations,generally involving two periods from 1954 to 1985 and from 2007 to 2011,were used.We detected no significant temporal trend for both the annual runoff volume(Q) and the annual suspended Sediment Load(SL) over more than 30 years before 1985.The flow duration curves and the Suspended Sediment Concentration(SSC) also hold constant before 1985.Compared with the period before 1985,SL has decreased by about 80% though Q remains unchanged for the period after 2007.Detailed examination shows that the flow duration curves after 2007 have changed with a significant decrease in the high-flow component,which acts as a major cause for the decreasing SL.In addition,SSC has decreased by several times,which also contributes to the decrease in SL after 2007.Both decreases in high-flow discharges and in SSC can be linked with recent human activities,mainly including vegetation establishment and dam constructions.The constant Q and the decreasing SL are also reported for the main stream of the Yangtze River and other major rivers in southern China,although they are orders of magnitude larger than our study area in drainage area size.The present study highlights the importance of high-flow discharges on SL and suggests that the use of SL is more appropriate to reflect environmental change than Q.
基金financial support from the Ministry of Water Resources special funds for scientific research (Grant No. 20131037)National Natural Science Foundation of China (Grant No. 41001018)One Hundred Young Persons Project of Institute of Mountain Hazards and Environment (Grant No. SDSQB-2010-02)
文摘As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield.
基金supported by the National Natural Science Foundation of China (51239009, 41171034)Shaanxi Provincial Natural Science Foundation of China (Key) Project (2013JZ012)+1 种基金Shaanxi Provincial Key Laboratory Project of Department of Education (14JS059)Shaanxi Provincial Water Conservancy Science and Technology Project (2016slkj-11)
文摘The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.
基金Supported by the Science and Technology Development Plan Project of Binzhou City(Policy Guidance)(2013ZC1001)Scientific Research Foundation of Binzhou University(BZXYG1414)+1 种基金Key Science and Technology Project for the Control of Major Safety Production Accidents in 2015 of State Administration of Work Safety(Shandong-0052-2015AQ)Project for Experimental Techniques of Binzhou University(BZXYSYXM201207)
文摘Based on meteorologic data in Xixi Watershed from 1972 to 1979, the SWAT model was applied to simulate the response of runoff and sediment yield in Xixi Watershed to climate change under 24 kinds of climate change scenarios, and then the spatial and temporal distribution of change rates of the runoff and sediment were analyzed. The results showed that the runoff yield would increase with the increase of precipitation or decrease of temperature, and the sediment yield would increase with the increase of precipitation or increase of temperature; the runoff would be more sensitive to variations in precipitation than to variations in temperature, and precipitation change would lead to more obvious change in the run- off yield; the temporal distribution of change rates of the runoff and sediment yield would be uneven in the 12 months, and the variation trends of the two change rates in the 12 months would be accordant; the spatial distribution of change rates of the runoff and sediment yield would be uneven in the sub-watersheds, and the change rate of the runoff yield would be bigger in the sub-watersheds where the runoff yield in the basic period would be smaller. This study can provide decision-making basis for sustainable development of Jinjiang Basin.
文摘The relation between runoff and sediment and land cover is investigated in the Cedar Creek Watershed (CCW), located in Northeastern Indiana, United States. The major land cover types in this watershed are cultivated land, woodland and pasture /Conservation Reserve Program (CRP), which account for approximate 90 % of the total area in the region. Moreover, land use was changed tremendously from aooo to 9004, even without regarding the effect of the crop rotation system (corn & soybean). At least 49 % of land cover types were changed into other types in this period. The land cover types, ranking by changing area from high to low series, are rye, soybean, corn, woodland and pasture/CRP. The CCW is divided into 21 subwatersheds, and soil and water loss in each sub-watershed is computed by using Soil and Water Assessment Tool (SWAT). The results indicate that the variations in runoff and sediment have positive relation to the area of crops (especially corn and soybean); sediment is more sensitive to land cover changes than runoff; more heavy rainfall does not always mean more runoff because the combination of different land cover types always modify runoff coefficient; and rye, soybean and corn are the key land cover types, which affected the variation in runoff and sediment in the CCW.
基金Supported by Gansu Youth Science and Technology Fund Program(21JR7RA778)Innovation Fund Project of Gansu Provincial Universities(2020A-186)。
文摘In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering method were used to analyze the changes of runoff and sediment discharge and their driving factors in four hydrological stations along the Taohe River from 1957 to 2016.The results showed that the correlation between runoff and sediment of the four hydrological stations along the Taohe River was significant,and the correlation coefficient was 0.728-0.984.The runoff and sediment transport in the interval showed an increasing and decreasing trend.The decrease rate of runoff was 133.82%-216.17%higher than that of Xiabagou station,and the decrease rate of sediment transport was 250.49%-4766.33%higher than that of Xiabagou station.The mutation year of the Taohe River runoff occurred in 1986,and the maximum decrease was 35%.The water-sediment relationship curves of different periods showed that the sediment discharge of the four stations changed abruptly around 1990,and the maximum reduction before and after the mutation was up to 73%,and the sediment discharge in the river channel decreased significantly.The research showed that human activities were the main driving factors for the change of water-sediment relationship in the Taohe River.
文摘This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).
基金This research was funded by the National Natural Science Foundation of China(U1603242)the Science and Technology Service Network Initiative(STS)Project in the Chinese Academy of Sciences(KFJ-STS-QYZD-071)+1 种基金the Training Program for Youth Innovative Talents in Science and Technology in Xinjiang Uygur Autonomous Regions(QN2016BS0052)the CAS"Light of West China"Program(2017-XBQNXZ-B-012).
文摘In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.
基金National Basic Research Program of China, No.2005CB422006 National Natural Science Foundation of China, No.90202012 No.40561002
文摘Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.
文摘Based on the 58 years monthly flow data (from 1956 to 2013) editing by Jingle hydrological station of Fen River and Shangjinyou station, data resources are used to analyze the annual and inter-annual changes from spatial and temporal scale by statistical methods, mainly annual spatial and temporal distribution, trend of inter-annual changes, cycle and mutation changes. The reasons of runoff into reservoir changes are deeply analyzed by annual precipitation data of catchments above Fenhe Reservoir 1956 to 2013 and the land and water reservation methods which are implemented recently. It shows that there is a significant decrease of the inter-annual run-off with main and second cycle periods, 23a and 13a respectively. Furthermore, it exists mutation point between 1970 and 1971 through runoff series. As for further analysis of the causes of Fenhe Reservoir runoff changes, it illustrates that the change of precipitation is the main reason the facilitate runoff changes. Also, the land and water reservation methods which are implemented in upstream of Fenhe Reservoir increase water storage capacity of soil, showing it non-ignorable effect to runoff changes.
基金supported by the National Natural Science Foundation of China (42230708)the Joint CAS (Chinese Academy of Sciences) & MPG (Max-Planck-Gesellschaft) Research Project (HZXM20225001MI)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region, China (2022TSYCLJ0056)。
文摘The shrinkage of the Aral Sea,which is closely related to the Amu Darya River,strongly affects the sustainability of the local natural ecosystem,agricultural production,and human well-being.In this study,we used the Bayesian Estimator of Abrupt change,Seasonal change,and Trend(BEAST)model to detect the historical change points in the variation of the Aral Sea and the Amu Darya River and analyse the causes of the Aral Sea shrinkage during the 1950–2016 period.Further,we applied multifractal detrend cross-correlation analysis(MF-DCCA)and quantitative analysis to investigate the responses of the Aral Sea to the runoff in the Amu Darya River,which is the main source of recharge to the Aral Sea.Our results showed that two significant trend change points in the water volume change of the Aral Sea occurred,in 1961 and 1974.Before 1961,the water volume in the Aral Sea was stable,after which it began to shrink,with a shrinkage rate fluctuating around 15.21 km3/a.After 1974,the water volume of the Aral Sea decreased substantially at a rate of up to 48.97 km3/a,which was the highest value recorded in this study.In addition,although the response of the Aral Sea's water volume to its recharge runoff demonstrated a complex non-linear relationship,the replenishment of the Aral Sea by the runoff in the lower reaches of the Amu Darya River was identified as the dominant factor affecting the Aral Sea shrinkage.Based on the scenario analyses,we concluded that it is possible to slow down the retreat of the Aral Sea and restore its ecosystem by increasing the efficiency of agricultural water use,decreasing agricultural water use in the middle and lower reaches,reducing ineffective evaporation from reservoirs and wetlands,and increasing the water coming from the lower reaches of the Amu Darya River to the 1961–1973 level.These measures would maintain and stabilise the water area and water volume of the Aral Sea in a state of ecological restoration.Therefore,this study focuses on how human consumption of recharge runoff affects the Aral Sea and provides scientific perspective on its ecological conservation and sustainable development.