A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectatio...A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.展开更多
H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplex...H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.展开更多
Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for th...Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.展开更多
Channel state information of OFDM-STC system is required for maximum likelihood decoding.A subspace-based semi-blind method was proposed for estimating the channels of OFDM-STC systems.The channels are first estimated...Channel state information of OFDM-STC system is required for maximum likelihood decoding.A subspace-based semi-blind method was proposed for estimating the channels of OFDM-STC systems.The channels are first estimated blindly up to an ambiguity parameter utilizing the nature structure of STC,irrespective of the underlying signal constellations.Furthermore,a method was proposed to resolve the ambiguity by using a few pilot symbols.The simulation results show the proposed semi-blind estimator can achieve higher spectral efficiency and provide improved estimation performance compared to the non-blind estimator.展开更多
A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of chan...A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.展开更多
Channel impulse response (CIR) can be estimated on the basis of cyclic correlation in time-domain for orthogonal frequency division multiplexing (OFDM) systems, This article proposes a generalized channel estimati...Channel impulse response (CIR) can be estimated on the basis of cyclic correlation in time-domain for orthogonal frequency division multiplexing (OFDM) systems, This article proposes a generalized channel estimation method to reduce the estimation error by taking the average of different CIRs. Channel impulse responses are derived according to the different starting points of cyclic correlation. In addition, an effective CIR length estimation algorithm is also presented. The whole proposed methods are more effective to OFDM systems, especialiy to those with longer cyclic prefix. The analysis and the simulation results verify that the mean square error performance is 4-5 dB better than the conventional schemes under the same conditions.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa...For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.展开更多
Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols w...This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular net...Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.展开更多
In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the...In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the optimal locations of atoms with discrete delays for each path reconstruction from the perspective of linear fitting theory.Then,we have investigated the adverse effects of the non-ideal inner product function on the iteration in one of the most widely used channel estimation method,Orthogonal Matching Pursuit(OMP).The study shows that the distance between the selected atoms for each path in OMP can be larger than the sampling interval,which prevents OMP-based methods from achieving better performance.To overcome this drawback,the image deblurring-based channel estimation method,in which the channel estimation problem is analogized to one-dimensional image deblurring,was proposed to improve the large compensation distance of traditional OMP.The advantage of the proposed method was validated by the results of numerical simulation and sea trial data decoding.展开更多
An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in...An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.展开更多
A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the recei...A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the receiver.A high-efficiency time-domain TD least square LS channel estimator and a low-complexity frequency-domain Gaussian elimination GE equalizer are proposed to eliminate IQ distortion.The former estimator can significantly suppress channel noise by a factor N/L+1 over the existing frequency-domain FD LS where N and L+1 are the total number of subcarriers and the length of cyclic prefix and the proposed GE requires only 2N complex multiplications per OFDM symbol.Simulation results show that by exploiting the TD property of the channel the proposed TD-LS channel estimator obtains a significant signal-to-noise ratio gain over the existing FD-LS one whereas the proposed low-complexity GE compensation achieves the same bit error rate BER performance as the existing LS one.展开更多
For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced it...For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.展开更多
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur...In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.展开更多
Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented...Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.展开更多
文摘A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.
基金supported by the National Natural Science Foundation of China(6087410860904035+2 种基金61004052)the Directive Plan of Science Research from the Bureau of Education of Hebei Province(Z2009105)the Funds of Central Colleges Basic Scientific Operating Expense(N100604004)
文摘H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.
基金This project was supported by the National Natural Science Foundation of China (No. 69872029) the Research Fund for Doctoral Program of Higher Education of China (No. 1999069808).
文摘Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.
基金The National High Technology Research and Development Program(863Program)(No.2003AA12331007)The National NaturalScience Foundation of China(No.60572157)
文摘Channel state information of OFDM-STC system is required for maximum likelihood decoding.A subspace-based semi-blind method was proposed for estimating the channels of OFDM-STC systems.The channels are first estimated blindly up to an ambiguity parameter utilizing the nature structure of STC,irrespective of the underlying signal constellations.Furthermore,a method was proposed to resolve the ambiguity by using a few pilot symbols.The simulation results show the proposed semi-blind estimator can achieve higher spectral efficiency and provide improved estimation performance compared to the non-blind estimator.
基金Supported by the Starting Fund for Science Research of NJUST (AB41947)the Open Research Fund of National Mobile Communications Research Laboratory (N200609)Science Research Developing Fund of NJUST (XKF07023)
文摘A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.
基金the National Natural Science Foundation of China (60572039)and Commsys. Laborcotory of Sungkyunkwan University in Korea
文摘Channel impulse response (CIR) can be estimated on the basis of cyclic correlation in time-domain for orthogonal frequency division multiplexing (OFDM) systems, This article proposes a generalized channel estimation method to reduce the estimation error by taking the average of different CIRs. Channel impulse responses are derived according to the different starting points of cyclic correlation. In addition, an effective CIR length estimation algorithm is also presented. The whole proposed methods are more effective to OFDM systems, especialiy to those with longer cyclic prefix. The analysis and the simulation results verify that the mean square error performance is 4-5 dB better than the conventional schemes under the same conditions.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
基金funded by Taif University Researchers Supporting Project No.(TURSP-2020/214),Taif University,Taif,Saudi Arabia。
文摘For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金This research project was funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(43-PRFA-P-58).
文摘This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
基金supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003)Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053)。
文摘Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
基金supported by the Fundamental Research Funds for the Central Universities under Grant 20720200092the National Natural Science Foundation of China under Grant 62171394,U21A20444,61771152,62071402+2 种基金the Sustainable Funding of the Key Laboratory of Underwater Acoustic Technology under Grant JCKYS2022604SSJS001Key Laboratory of Universal Wireless Communications(BUPT)Ministry of Education,P.R.China under Grant KFKT-2022103.
文摘In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the optimal locations of atoms with discrete delays for each path reconstruction from the perspective of linear fitting theory.Then,we have investigated the adverse effects of the non-ideal inner product function on the iteration in one of the most widely used channel estimation method,Orthogonal Matching Pursuit(OMP).The study shows that the distance between the selected atoms for each path in OMP can be larger than the sampling interval,which prevents OMP-based methods from achieving better performance.To overcome this drawback,the image deblurring-based channel estimation method,in which the channel estimation problem is analogized to one-dimensional image deblurring,was proposed to improve the large compensation distance of traditional OMP.The advantage of the proposed method was validated by the results of numerical simulation and sea trial data decoding.
文摘An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.
基金The Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2013D02)the Fundamental Research Funds for the Central Universities(No.30920130122004)the National Natural Science Foundation of China(No.61271230,61472190)
文摘A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the receiver.A high-efficiency time-domain TD least square LS channel estimator and a low-complexity frequency-domain Gaussian elimination GE equalizer are proposed to eliminate IQ distortion.The former estimator can significantly suppress channel noise by a factor N/L+1 over the existing frequency-domain FD LS where N and L+1 are the total number of subcarriers and the length of cyclic prefix and the proposed GE requires only 2N complex multiplications per OFDM symbol.Simulation results show that by exploiting the TD property of the channel the proposed TD-LS channel estimator obtains a significant signal-to-noise ratio gain over the existing FD-LS one whereas the proposed low-complexity GE compensation achieves the same bit error rate BER performance as the existing LS one.
文摘For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.
基金The National Natural Science Foundation of China (No.60872075)the National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)
文摘In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.
文摘Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.