The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in ...The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.展开更多
Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure...Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure on the processed billet.The plastic deformation behaviors of commercially pure aluminum during ECAEE-SC process were investigated using finite element analysis DEFORM-3D simulation software.The material flow,the load history,the distribution of effective strain and mean stress in the billet were analyzed in comparison with conventional equal channel angular extrusion(ECAE)process.In addition,single-pass ECAEE-SC was experimentally conducted on commercially pure aluminum at room temperature for validation,and the evolution of microstructure and microhardness of as-processed material was discussed.It was shown that during the process,the material is in the ideal hydrostatic stress state and the load requirement for ECAEE-SC is much more than that for ECAE.After a single-pass ECAEE-SC,an average strain of 3.51 was accumulated in the billet with homogeneous distribution.Moreover,the microstructure was significantly refined and composed of equiaxed ultrafine grains with sub-micron size.Considerable improvement in the average microhardness of aluminum was also found,which was homogenized and increased from HV 36.61 to HV 70.20,denoting 91.75%improvement compared with that of the as-cast billet.展开更多
This paper investigates fast time-varying channel estimation in LTE-R communication systems. The Basis Expansion Model (BEM) is adopted to fit the fast time-varying channel in a high-speed railway com- munication sc...This paper investigates fast time-varying channel estimation in LTE-R communication systems. The Basis Expansion Model (BEM) is adopted to fit the fast time-varying channel in a high-speed railway com- munication scenario. The channel impulse response is modeled as the sum of basis functions multiplied by different coefficients. The optimal coefficients are obtained by theoretical analysis. Simulation results show that a Generalized Complex-Exponential BEM (GCE-BEM) outperforms a Complex-Exponential BEM (CE-BEM) and a polynomial BEM in terms of Mean Squared Error (MSE). Besides, the MSE of the CE- BEM decreases gradually as the number of basis functions increases. The GCE-BEM has a satisfactory performance with the serious fading channel.展开更多
The finite element method is employed to simulate incompressible viscous unsteady flow in two dimensional channel with a sudden expansion. The streamline patterns and the velocity vector plots are presented at differ...The finite element method is employed to simulate incompressible viscous unsteady flow in two dimensional channel with a sudden expansion. The streamline patterns and the velocity vector plots are presented at different expansion ratios and at different moment. The results obtained have certain significance to analyze the formation of eddies and energy loss in a sudden expansion channel flow and other complex channel flow.展开更多
China’s highways started at a low level in facilities. In 1949, the total mileage of the whole coun-try’s highways was only 80,000 km, with a density of 0.001 km/sq km. Following the founding of New China, especiall...China’s highways started at a low level in facilities. In 1949, the total mileage of the whole coun-try’s highways was only 80,000 km, with a density of 0.001 km/sq km. Following the founding of New China, especially since the 1980s, great changes have taken place in the facilities of China’s highways. By the end of 1995, the展开更多
In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homot...In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.展开更多
The lattice Boltzmann method was used to investigate numerically the fiber orientation distributions in slit channel flows with abrupt expansion for fiber suspensions even in the concentrated regime. The channels have...The lattice Boltzmann method was used to investigate numerically the fiber orientation distributions in slit channel flows with abrupt expansion for fiber suspensions even in the concentrated regime. The channels have a thin slit geometry with 1:4 and 1:3 expansions. Both the interactions between fibers and that between fibers and channel walls were taken into consideration. Some of numerical results are qualitatively in agreement with the experiment data. It is found that most of fibers are aligned in the flow direction in all the suspensions in the entrance region of the expansion. Fiber orientation distributions, having different patterns in different regions of the flow, depend on the expansion ratio of the channel. The mechanical fiber-fiber interaction largely affects the fiber orientation in the downstream of the expansion and in the salient corner for the cases of concentrated suspensions. The hydrodynamic interaction plays an important role on the fiber orientation in the dilute suspension.展开更多
The paper describes the comparison of commonly used k-ε and k-ω turbulence models for simulating the recirculating flows behind a sudden expansion in a straight open channel. The depth-average numerical model and th...The paper describes the comparison of commonly used k-ε and k-ω turbulence models for simulating the recirculating flows behind a sudden expansion in a straight open channel. The depth-average numerical model and the quasi three-dimensional multilayer model are presented respectively. The governing equations are split into three parts in the finite difference approach: advection, dispersion and propagation. Comparison of the results computed with the k-ε and k-ω models shows that the two turbulence models have strong robustness in simulating the reattachment length of the recirculating flows. The computed results are found in good agreement with the measured data.展开更多
High data transmission rates and high mobility give rise to time- and frequency-selectivity in wireless communication channels. This paper investigated time and frequency doubly selective channel estimation using pilo...High data transmission rates and high mobility give rise to time- and frequency-selectivity in wireless communication channels. This paper investigated time and frequency doubly selective channel estimation using pilot tones among Multi-Input Multi-Output (MIMO) orthogonal frequency division multiplexing (OFDM). Firstly, a complex exponential basis expansion channel model (BECM) was introduced to represent doubly selective channel during an OFDM symbol period; then, based on BECM, an effective MIMO-OFDM doubly selective channel estimation method was presented; finally, the optimality in designing pilot tones parameters was done according to the minimization of channel estimation MSE, mainly including the number, the placement and the structure of pilot tones. Simulation results show that the proposed estimation method has good performance in doubly selective channel scenarios and confirms the theoretical analysis findings.展开更多
基金the National Basic Research Programs of China (No. 2011CB201204)the National Natural Science Foundation of China (Nos. 51074160)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2010QNA03)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education institutions for their support for this project
文摘The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.
基金Project(51905462)supported by the National Natural Science Foundation of ChinaProject(BK20200297)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(GDZB-127)supported by Jiangsu Provincial“Six Talent Peaks”Program,ChinaProject(2018202)supported by the“Youth Science and Technology Talents'Sponsored Program of Jiangsu Science and Technology Association,China。
文摘Equal channel angular expansion extrusion with spherical cavity(ECAEE-SC)was introduced as a novel severe plastic deformation(SPD)technique,which is capable of imposing large plastic strain and intrinsic back-pressure on the processed billet.The plastic deformation behaviors of commercially pure aluminum during ECAEE-SC process were investigated using finite element analysis DEFORM-3D simulation software.The material flow,the load history,the distribution of effective strain and mean stress in the billet were analyzed in comparison with conventional equal channel angular extrusion(ECAE)process.In addition,single-pass ECAEE-SC was experimentally conducted on commercially pure aluminum at room temperature for validation,and the evolution of microstructure and microhardness of as-processed material was discussed.It was shown that during the process,the material is in the ideal hydrostatic stress state and the load requirement for ECAEE-SC is much more than that for ECAE.After a single-pass ECAEE-SC,an average strain of 3.51 was accumulated in the billet with homogeneous distribution.Moreover,the microstructure was significantly refined and composed of equiaxed ultrafine grains with sub-micron size.Considerable improvement in the average microhardness of aluminum was also found,which was homogenized and increased from HV 36.61 to HV 70.20,denoting 91.75%improvement compared with that of the as-cast billet.
文摘This paper investigates fast time-varying channel estimation in LTE-R communication systems. The Basis Expansion Model (BEM) is adopted to fit the fast time-varying channel in a high-speed railway com- munication scenario. The channel impulse response is modeled as the sum of basis functions multiplied by different coefficients. The optimal coefficients are obtained by theoretical analysis. Simulation results show that a Generalized Complex-Exponential BEM (GCE-BEM) outperforms a Complex-Exponential BEM (CE-BEM) and a polynomial BEM in terms of Mean Squared Error (MSE). Besides, the MSE of the CE- BEM decreases gradually as the number of basis functions increases. The GCE-BEM has a satisfactory performance with the serious fading channel.
文摘The finite element method is employed to simulate incompressible viscous unsteady flow in two dimensional channel with a sudden expansion. The streamline patterns and the velocity vector plots are presented at different expansion ratios and at different moment. The results obtained have certain significance to analyze the formation of eddies and energy loss in a sudden expansion channel flow and other complex channel flow.
文摘China’s highways started at a low level in facilities. In 1949, the total mileage of the whole coun-try’s highways was only 80,000 km, with a density of 0.001 km/sq km. Following the founding of New China, especially since the 1980s, great changes have taken place in the facilities of China’s highways. By the end of 1995, the
基金supported by the National Natural Science Foundations of China (50936003, 50905013)The Open Project of State Key Lab. for Adv. Matals and Materials (2009Z-02)Research Foundation of Engineering Research Institute of USTB
文摘In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.10632070).
文摘The lattice Boltzmann method was used to investigate numerically the fiber orientation distributions in slit channel flows with abrupt expansion for fiber suspensions even in the concentrated regime. The channels have a thin slit geometry with 1:4 and 1:3 expansions. Both the interactions between fibers and that between fibers and channel walls were taken into consideration. Some of numerical results are qualitatively in agreement with the experiment data. It is found that most of fibers are aligned in the flow direction in all the suspensions in the entrance region of the expansion. Fiber orientation distributions, having different patterns in different regions of the flow, depend on the expansion ratio of the channel. The mechanical fiber-fiber interaction largely affects the fiber orientation in the downstream of the expansion and in the salient corner for the cases of concentrated suspensions. The hydrodynamic interaction plays an important role on the fiber orientation in the dilute suspension.
文摘The paper describes the comparison of commonly used k-ε and k-ω turbulence models for simulating the recirculating flows behind a sudden expansion in a straight open channel. The depth-average numerical model and the quasi three-dimensional multilayer model are presented respectively. The governing equations are split into three parts in the finite difference approach: advection, dispersion and propagation. Comparison of the results computed with the k-ε and k-ω models shows that the two turbulence models have strong robustness in simulating the reattachment length of the recirculating flows. The computed results are found in good agreement with the measured data.
基金This work was supported by the National Natural Science Foundation of China(Grant No.60272046) the Major Project(Grant No.604963 10)+2 种基金National High Technology Project of China(Grant No.2002AA123031)National Natural Science Foundation of Jiangsu Province(Grant No.BK2005061) the Grant of PhD Programmes in High Education Institutes of MOE(Grant No.20020286014).
文摘High data transmission rates and high mobility give rise to time- and frequency-selectivity in wireless communication channels. This paper investigated time and frequency doubly selective channel estimation using pilot tones among Multi-Input Multi-Output (MIMO) orthogonal frequency division multiplexing (OFDM). Firstly, a complex exponential basis expansion channel model (BECM) was introduced to represent doubly selective channel during an OFDM symbol period; then, based on BECM, an effective MIMO-OFDM doubly selective channel estimation method was presented; finally, the optimality in designing pilot tones parameters was done according to the minimization of channel estimation MSE, mainly including the number, the placement and the structure of pilot tones. Simulation results show that the proposed estimation method has good performance in doubly selective channel scenarios and confirms the theoretical analysis findings.