In this paper, we propose a flexible and fairness-oriented packet scheduling approach for 3GPP UTRAN long term evolution (LTE) type packet radio systems, building on the ordinary proportional fair (PF) scheduling prin...In this paper, we propose a flexible and fairness-oriented packet scheduling approach for 3GPP UTRAN long term evolution (LTE) type packet radio systems, building on the ordinary proportional fair (PF) scheduling principle and channel quality indicator (CQI) feedback. Special emphasis is also put on practical feedback reporting mechanisms, including the effects of mobile measurement and estimation errors, reporting delays, and CQI quantization and compression. The performance of the overall scheduling and feedback re-porting process is investigated in details, in terms of cell throughput, coverage and resource allocation fairness, by using extensive quasistatic cellular system simulations in practical OFDMA system environment with frequency reuse of 1. The performance simulations show that by using the proposed modified PF ap-proach, significant coverage improvements in the order of 50% can be obtained at the expense of only 10-15% throughput loss, for all reduced feedback reporting schemes. This reflects highly improved fairness in the radio resource management (RRM) compared to other existing schedulers, without essentially com-promising the cell capacity. Furthermore, we demonstrate the improved functionality increase in radio re-source management for UE’s utilizing multi-antenna diversity receivers.展开更多
A Simple and useful decision feedback equalizer used for non-linear channels with severe linear distortion and mild non-linear distortion is proposed. It is a combination of a nonlinear channel equalizer based on conn...A Simple and useful decision feedback equalizer used for non-linear channels with severe linear distortion and mild non-linear distortion is proposed. It is a combination of a nonlinear channel equalizer based on connectionist model and a common decision feedback equalizer for linear channels. For a typical non-linear channel model it is shown that the equalization performances of the proposed equalizer are improved significantly.展开更多
The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation wit...The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.展开更多
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of ...In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.展开更多
To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input...To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input multiple-output (MIMO) system. In the scheme, the channel nullspace quantization vector is used as the transmit beamformer of the interference user directly based on channel null-space feedback. Since the interference can be determined at the receiver, interference rejection combining (IRC) is jointly utilized to cancel the inter-user interference. Simulation re- sults show that the proposed scheme can provide substantial sum-rate improvement especially at high SNR.展开更多
In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge am...In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge amounts of CSI data. Based on the analysis, the concept of the Tomographic Channel Model(TCM) is presented. With cluster algorithms, the static CSI database can be built in an off-line manner. The static CSI database can provide prior information to help pilot design to reduce overhead and improve accuracy in channel estimation. A new CSI prediction method and a new channel estimation method between different frequency bands are introduced based on the static CSI database. Using measurement data, the performance of the new channel prediction method is compared with that of the Auto Regression(AR) predictor. The results indicate that the prediction range of the new method is better than that of the AR method and the new method can predict with fewer pilot symbols. Using measurement data, the new channel estimation method between different frequency bands can estimate the CSI of one frequency band based on known CSI of another frequency band without any feedback.展开更多
提出了一种适用于超短距离(Very Short Reach,VSR)信道、面向112 Gb/s PAM4(Pulse Amplitude Modulation 4)接收机的自适应均衡设计方案。在该方案中,接收机前端利用3个连续时间线性均衡器(Continuous Time Linear Equalizer,CTLE)对信...提出了一种适用于超短距离(Very Short Reach,VSR)信道、面向112 Gb/s PAM4(Pulse Amplitude Modulation 4)接收机的自适应均衡设计方案。在该方案中,接收机前端利用3个连续时间线性均衡器(Continuous Time Linear Equalizer,CTLE)对信号分别在高频、中频和低频进行补偿,可变增益放大器(Variable Gain Amplifier,VGA)和饱和放大器(Saturation Amplifier,SatAmp)则用于对信号幅值的缩放。除了3个数据采样器外,引入4个辅助采样器用于进一步改善阈值自适应算法性能。同时,采用符号最小均方算法,利用接收端数据采样器和辅助采样器之间的偏移推动辅助参考电压收敛到信号星座电平,从而确保PAM4接收信号的眼图在垂直方向上3个眼睛具有相等的间隔和恒定的信噪比(Signal-to-Noise Ratio,SNR)。仿真结果表明,所提出的112 Gb/s PAM4接收机能够在损耗为15 dB的信道上实现小于10~(-12)的误码率,并且具有良好的眼图性能,其最差眼高为75 mV,眼宽为0.34 UI(Unit Interval),与传统方案相比具有显著的性能提升。展开更多
文摘In this paper, we propose a flexible and fairness-oriented packet scheduling approach for 3GPP UTRAN long term evolution (LTE) type packet radio systems, building on the ordinary proportional fair (PF) scheduling principle and channel quality indicator (CQI) feedback. Special emphasis is also put on practical feedback reporting mechanisms, including the effects of mobile measurement and estimation errors, reporting delays, and CQI quantization and compression. The performance of the overall scheduling and feedback re-porting process is investigated in details, in terms of cell throughput, coverage and resource allocation fairness, by using extensive quasistatic cellular system simulations in practical OFDMA system environment with frequency reuse of 1. The performance simulations show that by using the proposed modified PF ap-proach, significant coverage improvements in the order of 50% can be obtained at the expense of only 10-15% throughput loss, for all reduced feedback reporting schemes. This reflects highly improved fairness in the radio resource management (RRM) compared to other existing schedulers, without essentially com-promising the cell capacity. Furthermore, we demonstrate the improved functionality increase in radio re-source management for UE’s utilizing multi-antenna diversity receivers.
基金Supported by the National Natural Science Foundation of China
文摘A Simple and useful decision feedback equalizer used for non-linear channels with severe linear distortion and mild non-linear distortion is proposed. It is a combination of a nonlinear channel equalizer based on connectionist model and a common decision feedback equalizer for linear channels. For a typical non-linear channel model it is shown that the equalization performances of the proposed equalizer are improved significantly.
基金Supported by the National Natural Science Foundation of China(No.61601136)
文摘The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.
基金financially supported by the Research Fund for the Visiting Scholar Program by the China Scholarship Council(Grant No.2011631504)the Fundamental Research Funds for the Central Universities(Grant No.201112G020)+1 种基金the National Natural Science Foundation of China(Grant No.41176032)China Scholarship Council
文摘In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.
基金Supported by the Sino-Swedish IMT-Advanced and Beyond Cooperative Program(2008DFA11780)
文摘To reduce the negative impact of channel quantization errors, a low-complexity transceiver joint design scheme for both the transmit beamformers and receive combining vectors is proposed in the two-user multiple-input multiple-output (MIMO) system. In the scheme, the channel nullspace quantization vector is used as the transmit beamformer of the interference user directly based on channel null-space feedback. Since the interference can be determined at the receiver, interference rejection combining (IRC) is jointly utilized to cancel the inter-user interference. Simulation re- sults show that the proposed scheme can provide substantial sum-rate improvement especially at high SNR.
基金supported by the National Natural Science Foundation of China (No.61631013)National Key Basic Research Program of China (973 Program)(No. 2013CB329002)National Major Project (NO. 2018ZX03001006003)
文摘In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge amounts of CSI data. Based on the analysis, the concept of the Tomographic Channel Model(TCM) is presented. With cluster algorithms, the static CSI database can be built in an off-line manner. The static CSI database can provide prior information to help pilot design to reduce overhead and improve accuracy in channel estimation. A new CSI prediction method and a new channel estimation method between different frequency bands are introduced based on the static CSI database. Using measurement data, the performance of the new channel prediction method is compared with that of the Auto Regression(AR) predictor. The results indicate that the prediction range of the new method is better than that of the AR method and the new method can predict with fewer pilot symbols. Using measurement data, the new channel estimation method between different frequency bands can estimate the CSI of one frequency band based on known CSI of another frequency band without any feedback.