" Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a s..." Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.展开更多
An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, an...An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, and the upper sheet is a porous solid plate. By suitable transformations, the equations of conservation of mass and momentum are reduced to a system of coupled non-linear ordinary differential equations. A series of solutions to this coupled non-linear system are obtained by a powerful analytic technique, i.e., the homotopy analysis method (HAM). The results are presented with graphs. The effects of non-dimensional parameters R, A, M2, a, and K2 on the velocity field are discussed in detail.展开更多
A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3...A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.展开更多
The GaN HEMT is a potential candidate for RF applications due to the high frequency and large power handling capability.To ensure the quality of the communication signal,linearity is a key parameter during the system ...The GaN HEMT is a potential candidate for RF applications due to the high frequency and large power handling capability.To ensure the quality of the communication signal,linearity is a key parameter during the system design.However,the GaN HEMT usually suffers from the nonlinearity problems induced by the nonlinear parasitic capacitance,transconductance,channel transconductance etc.Among them,the transconductance reduction is the main contributor for the nonlinearity and is mostly attributed to the scattering effect,the increasing resistance of access region,the self-heating effect and the trapping effects.Based on the mechanisms,device-level improvement methods of transconductance including the trapping suppression,the nanowire channel,the graded channel,the double channel,the transconductance compensation and the new material structures have been proposed recently.The features of each method are reviewed and compared to provide an overview perspective on the linearity of the GaN HEMT at the device level.展开更多
文摘" Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.
文摘An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, and the upper sheet is a porous solid plate. By suitable transformations, the equations of conservation of mass and momentum are reduced to a system of coupled non-linear ordinary differential equations. A series of solutions to this coupled non-linear system are obtained by a powerful analytic technique, i.e., the homotopy analysis method (HAM). The results are presented with graphs. The effects of non-dimensional parameters R, A, M2, a, and K2 on the velocity field are discussed in detail.
文摘术前预测透明细胞肾细胞癌(clear cell renal cell carcinoma,ccRCC)的分级可有效评估患者的预后并指导临床治疗,但实现精准预测是目前本领域内的一项重要问题。该研究首先确定最优建模的CT类型与网络层数,提出了一种基于改进残差网络的ccRCC的CT影像分级模型,具体包括:利用大卷积操作对图像进行原始特征提取,利用混合注意力模块通过计算特征图中当前空间和临近空间以及当前空间和远距离空间之间的信息交互获取更多有用的特征,使得原始图像特征图在通道维度与空间维度上进行自适应特征细化,利用四个深度卷积网络层提取图像深度特征,并利用改进通道注意力模块产生通道注意力特征图信息,提取更多通道上的交互信息。实验结果表明,增强CT实质期图像和34层残差网络最有利于分级预测模型的开发,所提出的模型的总体加权准确率、AUC、精度、召回率和F1分数分别为90.8%、0.897、90.5%、90.8%、90.9%,各项指标优于其他常见网络结构,因此,该模型在预测ccRCC的国际泌尿病理学学会(International Society of Urological Pathology,ISUP)分级方面有良好的效能,对患者的临床辅助诊断和预后治疗具有重要的理论指导意义。
基金supported by the Foundation for Development of Science and Technology of Shanghai (Grant No 022261002)
文摘A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.
基金supported by the Shenzhen Science and Technology Program on Key Basic Research Project undergrant JCYJ20210324120409025the National Natural Science Foundation of China under grant 61904135。
文摘The GaN HEMT is a potential candidate for RF applications due to the high frequency and large power handling capability.To ensure the quality of the communication signal,linearity is a key parameter during the system design.However,the GaN HEMT usually suffers from the nonlinearity problems induced by the nonlinear parasitic capacitance,transconductance,channel transconductance etc.Among them,the transconductance reduction is the main contributor for the nonlinearity and is mostly attributed to the scattering effect,the increasing resistance of access region,the self-heating effect and the trapping effects.Based on the mechanisms,device-level improvement methods of transconductance including the trapping suppression,the nanowire channel,the graded channel,the double channel,the transconductance compensation and the new material structures have been proposed recently.The features of each method are reviewed and compared to provide an overview perspective on the linearity of the GaN HEMT at the device level.