Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir mode...Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.展开更多
The geological conditions of offshore shallow water delta oil reservoirs were complex, with limited well data and large well spacing. Taking A Oilfield in the Bohai Sea Area, China as an example, the target sand body ...The geological conditions of offshore shallow water delta oil reservoirs were complex, with limited well data and large well spacing. Taking A Oilfield in the Bohai Sea Area, China as an example, the target sand body was formed in a shallow water delta sedimentary environment, with well-developed underwater distributary channels and frequent branching and diversion. The reservoir was strong non-uniformity and uneven plane water cut pressure. To this end, based on the existing work of predecessors, combined with seismic, logging, and production dynamics data, and based on the genesis mechanism of shallow water delta reservoirs, the boundary of composite river channels was identified through seismic facies, and logging facies were used to subdivide them into single river levels within the composite river channels. Then, seismic waveform characteristics were applied to track and characterize the plane distribution of single river channels, guiding the efficient development of offshore shallow water delta oil fields and achieving increased storage and production in Bohai Oilfield, China.展开更多
This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years...This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa.展开更多
In this article, the bounding surfaces of channels were modeled by Bayesian stochastic simulation, which is a boundary-valued problem with observed valley erosion thickness at the locations of wells (hard data). In ...In this article, the bounding surfaces of channels were modeled by Bayesian stochastic simulation, which is a boundary-valued problem with observed valley erosion thickness at the locations of wells (hard data). In this study, it was assumed that the cross-section of the channel shows a parabolic shape, and the case that the vertical well and the horizontal well are located in the channel was considered. Peaceman's equations were modified to simultaneously solve both the vertical well problem and the horizontal well problem. In porous media, a 3D fluid equation was solved with iteration in the spatial domain, which had channels, vertical wells, and horizontal wells. As an example, the spatial distributions of pressure were calculated for channel reservoirs containing vertical and horizontal wells.展开更多
Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that...Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.展开更多
Dozens of low-head dams are removed annually for reasons of obsolescence, financial liability, public safety, or as part of aquatic ecosystem restoration. Prior to removing a dam, hydrologic and sedimentologic studies...Dozens of low-head dams are removed annually for reasons of obsolescence, financial liability, public safety, or as part of aquatic ecosystem restoration. Prior to removing a dam, hydrologic and sedimentologic studies are used to predict channel changes that would occur after the proposed dam removal. One commonly used predictive approach is a channel evolution model (CEM). However, most CEMs assume that the reservoir has trapped cohesive silts and muds. This study looks at the effects of low-head dam removal on a reservoir in filled with sand-rich sediment. The Secor Dam (2.5 m tall, 17 m wide) was constructed on the Ottawa River in northwestern Ohio (USA) during 1928 and was removed in 2007. High resolution channel cross-sections were measured at 17 locations prior to dam removal and re-measured every approximately 30 days for 6 months following the removal. Sediment sampling, sediment traps, substrate sampling, differential GPS tracking of channel bed forms and sediment coring were also used to characterize the channel sediment response to dam removal. Breaching of the dam produced a diffuse nickzone which was the width of the channel and about 10 m in length. One initial response was downstream migration of a sediment wave at rates up to 0.5 m/hr. The overall effect was erosion of the former reservoir to a distance of 150 m upstream of the former dam. Portions of the former reservoir were incised >1 m. Within the first 6 months after removal, approximately 800 m3 of sand had been mobilized from the former reservoir, transported downstream past the former dam, and had primarily in-filled pre-existing pools within a reach approximately 150 m downstream of the former dam. This behavior significantly differs from the predicted results of current CEMs which anticipate a first flush of suspended sediment and minor deposition of bed load materials in the channel downstream of the former dam.展开更多
1 Introduction Reservoir architecture analysis of distributary channel of Daqing oilfield has drawn consistent interest among development geologists and petroleum engineers over the last decade(Lv et al.,1999;Zhou et ...1 Introduction Reservoir architecture analysis of distributary channel of Daqing oilfield has drawn consistent interest among development geologists and petroleum engineers over the last decade(Lv et al.,1999;Zhou et al.,2008;Zhang et展开更多
Offshore Nile Delta gas reservoirs are dominated by slope-channel systems of Plio-Pleistocene age. High-quality, three-dimensional seismic imaging has significantly helped in defining the geomorphology and architectur...Offshore Nile Delta gas reservoirs are dominated by slope-channel systems of Plio-Pleistocene age. High-quality, three-dimensional seismic imaging has significantly helped in defining the geomorphology and architectures of these channels. Integrating seismic, logs and core data from four wells resulted in understanding of different stages of channel development and reservoir quality. The studied reservoirs that are largely controlled by episodes of transgressive-regressive events resulted in deposition of fine grained sediment and shale. Sienna channel complex consists of unconfined channel system with clearly defined development stages. The stages include amalgamated or stacked channels followed by channel abandonment phases and local flooding events. The depositional pattern continued through the Late Pliocene-Pleistocene. SimSat-P1 and SimSat-P2 reservoirs are characterized by isolated sand bodies, most probably relics of fan depositional setting. The depositional scenario that is largely controlled by successive transgression and flooding events resulted in deposition of interbedded, sheet-like, fine grained sediment and shale.展开更多
Reservoir inversion by production history matching is an important way to decrease the uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation method. There are two problem...Reservoir inversion by production history matching is an important way to decrease the uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation method. There are two problems have to be solved for the standard EnKF. One is the inconsistency between the updated model and the updated dynamical variables for nonlinear problems, another is the filter divergence caused by the small ensemble size. We improved the EnKF to overcome these two problems. We use the half iterative EnKF (HIEnKF) for reservoir inversion by doing history matching. During the H1EnKF process, the prediction data are obtained by rerunning the reservoir simulator using the updated model. This can guarantee that the updated dynamical variables are consistent with the updated model. The updated model can nonlinearly affect the prediction data. It is proved that HIEnKF is similar to the first iteration of the EnRML method. Covariance localization is introduced to alleviate filter divergence and spurious correlations caused by the small ensemble size. By defining the shape and size of the correlation area, spurious correlation between the gridblocks far apart is alleviated. More freedom of the model ensemble is preserved. The results of history matching and inverse problem obtained from the HIEnKF with covariance localization are improved. The results show that the model freedom increases with a decrease in the correlation length. Therefore the production data can be matched better. But too small a correlation length can lose some reservoir information and this would cause big errors in the reservoir model estimation.展开更多
【目的】河流筑坝对有机碳具有重要的拦截作用,影响内陆水体碳循环。目前,河道型水库沉积物有机碳空间分布特征和自生有机碳埋藏通量仍不明确。【方法】采用沉积物柱芯法、沉积物物理化学参数和碳同位素二元混合模型,对河道型水库(银盘...【目的】河流筑坝对有机碳具有重要的拦截作用,影响内陆水体碳循环。目前,河道型水库沉积物有机碳空间分布特征和自生有机碳埋藏通量仍不明确。【方法】采用沉积物柱芯法、沉积物物理化学参数和碳同位素二元混合模型,对河道型水库(银盘水库)沉积物有机碳埋藏开展了调研。【结果】结果显示:银盘水库沉积物有机碳含量变化范围为0.99%~1.32%,库中和坝前沉积柱有机碳含量均值分别为1.12%和1.16%;内源有机碳与总磷呈现显著正相关;有机碳埋藏速率变化范围为98.7~348.9 g C·m^(-2)·a^(-1),平均值为223.8 g C·m^(-2)·a^(-1),有机碳埋藏通量和内源有机碳埋藏通量分别为2.5×10^(9)g C·a^(-1)和1.8×10^(9)g C·a^(-1);内源有机碳对沉积物总有机碳的贡献比例为69.0%~75.2%,平均值为71.5%。【结论】结果表明:河道型水库沉积柱有机碳含量从库中到坝前没有明显变化;水库内源有机质的生成与营养盐输入和水体滞留时间密切相关;银盘水库有机碳埋藏通量相当于全球水库有机碳埋藏通量的0.04‰,河道型水库是个重要的潜在碳汇。研究结果能够为河道型水库碳埋藏研究和水电清洁型评估提供参考依据。展开更多
基金supported by The Ministry of Trade,Industry,and Energy(20172510102090,20142520100440,20162010201980)Global PhD Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015H1A2A1030756)supported by the National Research Foundation of Korea(NRF)Grant(No.2018R1C1B5045260).
文摘Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.
文摘The geological conditions of offshore shallow water delta oil reservoirs were complex, with limited well data and large well spacing. Taking A Oilfield in the Bohai Sea Area, China as an example, the target sand body was formed in a shallow water delta sedimentary environment, with well-developed underwater distributary channels and frequent branching and diversion. The reservoir was strong non-uniformity and uneven plane water cut pressure. To this end, based on the existing work of predecessors, combined with seismic, logging, and production dynamics data, and based on the genesis mechanism of shallow water delta reservoirs, the boundary of composite river channels was identified through seismic facies, and logging facies were used to subdivide them into single river levels within the composite river channels. Then, seismic waveform characteristics were applied to track and characterize the plane distribution of single river channels, guiding the efficient development of offshore shallow water delta oil fields and achieving increased storage and production in Bohai Oilfield, China.
文摘This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa.
基金Project supported by the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No: KM200510015003)
文摘In this article, the bounding surfaces of channels were modeled by Bayesian stochastic simulation, which is a boundary-valued problem with observed valley erosion thickness at the locations of wells (hard data). In this study, it was assumed that the cross-section of the channel shows a parabolic shape, and the case that the vertical well and the horizontal well are located in the channel was considered. Peaceman's equations were modified to simultaneously solve both the vertical well problem and the horizontal well problem. In porous media, a 3D fluid equation was solved with iteration in the spatial domain, which had channels, vertical wells, and horizontal wells. As an example, the spatial distributions of pressure were calculated for channel reservoirs containing vertical and horizontal wells.
基金supported by Korea Institute of Geoscience and Mineral Resources(Project No.GP2017-024)Ministry of Trade and Industry [Project No.NP2017-021(20172510102090)]funded by National Research Foundation of Korea(NRF)Grants(Nos.NRF-2017R1C1B5017767,NRF-2017K2A9A1A01092734)
文摘Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.
文摘Dozens of low-head dams are removed annually for reasons of obsolescence, financial liability, public safety, or as part of aquatic ecosystem restoration. Prior to removing a dam, hydrologic and sedimentologic studies are used to predict channel changes that would occur after the proposed dam removal. One commonly used predictive approach is a channel evolution model (CEM). However, most CEMs assume that the reservoir has trapped cohesive silts and muds. This study looks at the effects of low-head dam removal on a reservoir in filled with sand-rich sediment. The Secor Dam (2.5 m tall, 17 m wide) was constructed on the Ottawa River in northwestern Ohio (USA) during 1928 and was removed in 2007. High resolution channel cross-sections were measured at 17 locations prior to dam removal and re-measured every approximately 30 days for 6 months following the removal. Sediment sampling, sediment traps, substrate sampling, differential GPS tracking of channel bed forms and sediment coring were also used to characterize the channel sediment response to dam removal. Breaching of the dam produced a diffuse nickzone which was the width of the channel and about 10 m in length. One initial response was downstream migration of a sediment wave at rates up to 0.5 m/hr. The overall effect was erosion of the former reservoir to a distance of 150 m upstream of the former dam. Portions of the former reservoir were incised >1 m. Within the first 6 months after removal, approximately 800 m3 of sand had been mobilized from the former reservoir, transported downstream past the former dam, and had primarily in-filled pre-existing pools within a reach approximately 150 m downstream of the former dam. This behavior significantly differs from the predicted results of current CEMs which anticipate a first flush of suspended sediment and minor deposition of bed load materials in the channel downstream of the former dam.
基金funding support of this project from National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05010-002-005)
文摘1 Introduction Reservoir architecture analysis of distributary channel of Daqing oilfield has drawn consistent interest among development geologists and petroleum engineers over the last decade(Lv et al.,1999;Zhou et al.,2008;Zhang et
文摘Offshore Nile Delta gas reservoirs are dominated by slope-channel systems of Plio-Pleistocene age. High-quality, three-dimensional seismic imaging has significantly helped in defining the geomorphology and architectures of these channels. Integrating seismic, logs and core data from four wells resulted in understanding of different stages of channel development and reservoir quality. The studied reservoirs that are largely controlled by episodes of transgressive-regressive events resulted in deposition of fine grained sediment and shale. Sienna channel complex consists of unconfined channel system with clearly defined development stages. The stages include amalgamated or stacked channels followed by channel abandonment phases and local flooding events. The depositional pattern continued through the Late Pliocene-Pleistocene. SimSat-P1 and SimSat-P2 reservoirs are characterized by isolated sand bodies, most probably relics of fan depositional setting. The depositional scenario that is largely controlled by successive transgression and flooding events resulted in deposition of interbedded, sheet-like, fine grained sediment and shale.
基金support from the Shandong Natural Science Foundation(Grant No.ZR2010EM053)the Fundamental Research Funds for the Central Universities(Grant No.10CX04042A)
文摘Reservoir inversion by production history matching is an important way to decrease the uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation method. There are two problems have to be solved for the standard EnKF. One is the inconsistency between the updated model and the updated dynamical variables for nonlinear problems, another is the filter divergence caused by the small ensemble size. We improved the EnKF to overcome these two problems. We use the half iterative EnKF (HIEnKF) for reservoir inversion by doing history matching. During the H1EnKF process, the prediction data are obtained by rerunning the reservoir simulator using the updated model. This can guarantee that the updated dynamical variables are consistent with the updated model. The updated model can nonlinearly affect the prediction data. It is proved that HIEnKF is similar to the first iteration of the EnRML method. Covariance localization is introduced to alleviate filter divergence and spurious correlations caused by the small ensemble size. By defining the shape and size of the correlation area, spurious correlation between the gridblocks far apart is alleviated. More freedom of the model ensemble is preserved. The results of history matching and inverse problem obtained from the HIEnKF with covariance localization are improved. The results show that the model freedom increases with a decrease in the correlation length. Therefore the production data can be matched better. But too small a correlation length can lose some reservoir information and this would cause big errors in the reservoir model estimation.
文摘【目的】河流筑坝对有机碳具有重要的拦截作用,影响内陆水体碳循环。目前,河道型水库沉积物有机碳空间分布特征和自生有机碳埋藏通量仍不明确。【方法】采用沉积物柱芯法、沉积物物理化学参数和碳同位素二元混合模型,对河道型水库(银盘水库)沉积物有机碳埋藏开展了调研。【结果】结果显示:银盘水库沉积物有机碳含量变化范围为0.99%~1.32%,库中和坝前沉积柱有机碳含量均值分别为1.12%和1.16%;内源有机碳与总磷呈现显著正相关;有机碳埋藏速率变化范围为98.7~348.9 g C·m^(-2)·a^(-1),平均值为223.8 g C·m^(-2)·a^(-1),有机碳埋藏通量和内源有机碳埋藏通量分别为2.5×10^(9)g C·a^(-1)和1.8×10^(9)g C·a^(-1);内源有机碳对沉积物总有机碳的贡献比例为69.0%~75.2%,平均值为71.5%。【结论】结果表明:河道型水库沉积柱有机碳含量从库中到坝前没有明显变化;水库内源有机质的生成与营养盐输入和水体滞留时间密切相关;银盘水库有机碳埋藏通量相当于全球水库有机碳埋藏通量的0.04‰,河道型水库是个重要的潜在碳汇。研究结果能够为河道型水库碳埋藏研究和水电清洁型评估提供参考依据。