Monolithic nanoporous copper (NPC) ribbons with bimodal channel size distributions can be fabricated through chemical dealloying of Mg-32 Cu alloy in an acidic solution at room temperature. The microstructure of the...Monolithic nanoporous copper (NPC) ribbons with bimodal channel size distributions can be fabricated through chemical dealloying of Mg-32 Cu alloy in an acidic solution at room temperature. The microstructure of the as- dealloyed samples was characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis. These NPC ribbons are composed of interconnected large-sized channels (hundreds of nm) with highly porous channel walls (tens of nm). Both large- and small-sized channels are open, bicontinuous, and interpenetrating. Additionally, it is the first time to find that the evolution process of porous structure along the thickness direction of samples during the dealloying is from the interior to exterior, which is just contrary to the coarsening process along the thickness direction during the post-dealloying. Meanwhile, the corresponding mechanism is discussed in detail.展开更多
A direct-forcing fictitious domain(DFFD) method is used to perform fully resolved numerical simulations of turbulent channel flows laden with large neutrally buoyant particles. The effects of the particles on the turb...A direct-forcing fictitious domain(DFFD) method is used to perform fully resolved numerical simulations of turbulent channel flows laden with large neutrally buoyant particles. The effects of the particles on the turbulence(including the mean velocity,the root mean square(RMS) of the velocity fluctuation, the probability density function(PDF) of the velocity, and the vortex structures) at a friction Reynolds number of 395 are investigated. The results show that the drag-reduction effect caused by finite-size spherical particles at low particle volumes is negligibly small. The particle effects on the RMS velocities at Re_τ = 395 are significantly smaller than those at Re_τ = 180, despite qualitatively the same effects, i.e., the presence of particles decreases the maximum streamwise RMS velocity near the wall via weakening the large-scale streamwise vortices,and increases the transverse and spanwise RMS velocities in the vicinity of the wall by inducing smaller-scale vortices. The effects of the particles on the PDFs of the fluid fluctuating velocities normalized with the RMS velocities are small, regardless of the particle size, the particle volume fraction, and the Reynolds number.展开更多
The effect of grain size on the flow stress in an ECAPed Ti with a constant texture was investigated,assuming that 2,4,5 and 6 passes microstructures have a similar texture.The average size of recrystallized grains de...The effect of grain size on the flow stress in an ECAPed Ti with a constant texture was investigated,assuming that 2,4,5 and 6 passes microstructures have a similar texture.The average size of recrystallized grains decreased to 0.5 μm,0.4 μm,and 0.3 μm with respect to the ECAP pass number of 2,4,and 6,respectively.The ultimate tensile strength (UTS) and yield strength (YS) increase with an increase in the number of pressing.The UTS and YS of the 6 passes ECAPed sample were found to be 740.2 MPa and 580.3 MPa,respectively.An equation for the flow stress of an ECAPed Ti with a constant texture as a function of the strain and grain size was derived for the ECAPed metal.The following equation was finally obtained:σ(ε)=103.9+1825ε-9.6ε1/2·d-1/2+8.3d-1/2.展开更多
Equal-channel angular pressing (ECAP) process was applied to a 12 mm ×12 mm ×80 mm billet of pure copper (99.98 wt.%) at room temperature. The shear deformation characteristics, microstructure evolution,...Equal-channel angular pressing (ECAP) process was applied to a 12 mm ×12 mm ×80 mm billet of pure copper (99.98 wt.%) at room temperature. The shear deformation characteristics, microstructure evolution, and tensile properties were investigated. A combination of high strength (-420 MPa) and high elongation to failure (-25%) was achieved after eight ECAP passes at room temperature. The mixing of ultrafme grains (-0.2 μm) with nanocrystalline grains (-80 nm) resulted in high tensile strength and ductility.展开更多
In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applie...In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applied stresses using fatigue tests, fractography, and metallography. The mechanical properties of the extruded material were obtained at a tensile test velocity of 0.5 mm/min. It was found that the maximum increase in strength occurred after the 2nd pass. The total increase in ultimate strength after eight passes was 94%. The results of fatigue tests indicated that a significant improvement in fatigue life occurred after the 2nd pass. In subsequent passes, the fatigue life con-tinued to improve but at a considerably lower rate. The improved fatigue life was dependent on the number of passes and applied stresses. For low stresses (or high-cycle fatigue), a maximum increase in fatigue resistance of approximately 500%was observed for the extruded material after eight passes, whereas a maximum fatigue resistance of 5000%was obtained for high-applied stresses (or low-cycle fatigue). Optical microscopic examinations revealed grain refinements in the range of 32 to 4 μm. A maximum increase in impact energy absorption of 100%was achieved after eight passes. Consistent results were obtained from fractography and metallography examinations of the ex-truded material during fatigue tests.展开更多
This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both p...This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected.展开更多
The purpose of this investigation was to refine the grains of annealed 6063 aluminum alloy and to improve its yield stress and ul- timate strength. This was accomplished via the equal channel angular extrusion (ECAE...The purpose of this investigation was to refine the grains of annealed 6063 aluminum alloy and to improve its yield stress and ul- timate strength. This was accomplished via the equal channel angular extrusion (ECAE) process at a temperature of 200℃ using route A, with a constant ram speed of 30 mm/min through a die angle of 90° between the die channels for as many as 6 passes. The experiments were conducted on an Avery universal testing machine. The results showed that the grain diameter decreased from 45 μm to 2.8 μm after 6 extru- sion passes. The results also indicated that the major improvement in fatigue resistance occurred after the first pass. The subsequent passes improved the fatigue life but at a considerably lower rate. A maximum increase of 1100% in the case of low applied stresses and an ap- proximately 2200% increase in fatigue resistance in the case of high applied stresses were observed after 5 passes. The improvement of fa- tigue resistance is presumed to be due to (1) a reduction in the size and the number of Si crystals with increasing number of ECAE passes, (2) the aggregation of Cu during the ECAE process, (3) the formation and growth of CuA12 grains, and (4) grain refinement of the A1--6063 alloy during the ECAE process.展开更多
基金support by the State Key Basic Research Program of PRC (No. 2007CB936502)the National Natural Science Foundation of China(Nos. 50574008, 50954005 and 51074011)+3 种基金the National 863 Program Project (Nos. 2006AA03Z230 and 2008AA03Z208)the China Postdoctoral Science Foundation Funded Project (No. 2011M500214)the Basic Research Fund Project of Beihang University (No. 501LJJC2012101001)the Shanghai Aerospace Science and Technology Innovation Fund Project (No. SAST201269)
文摘Monolithic nanoporous copper (NPC) ribbons with bimodal channel size distributions can be fabricated through chemical dealloying of Mg-32 Cu alloy in an acidic solution at room temperature. The microstructure of the as- dealloyed samples was characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis. These NPC ribbons are composed of interconnected large-sized channels (hundreds of nm) with highly porous channel walls (tens of nm). Both large- and small-sized channels are open, bicontinuous, and interpenetrating. Additionally, it is the first time to find that the evolution process of porous structure along the thickness direction of samples during the dealloying is from the interior to exterior, which is just contrary to the coarsening process along the thickness direction during the post-dealloying. Meanwhile, the corresponding mechanism is discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Nos.91752117,11632016,and 11372275)the Natural Science Foundation of Zhejiang Province of China(No.LY17A020005)
文摘A direct-forcing fictitious domain(DFFD) method is used to perform fully resolved numerical simulations of turbulent channel flows laden with large neutrally buoyant particles. The effects of the particles on the turbulence(including the mean velocity,the root mean square(RMS) of the velocity fluctuation, the probability density function(PDF) of the velocity, and the vortex structures) at a friction Reynolds number of 395 are investigated. The results show that the drag-reduction effect caused by finite-size spherical particles at low particle volumes is negligibly small. The particle effects on the RMS velocities at Re_τ = 395 are significantly smaller than those at Re_τ = 180, despite qualitatively the same effects, i.e., the presence of particles decreases the maximum streamwise RMS velocity near the wall via weakening the large-scale streamwise vortices,and increases the transverse and spanwise RMS velocities in the vicinity of the wall by inducing smaller-scale vortices. The effects of the particles on the PDFs of the fluid fluctuating velocities normalized with the RMS velocities are small, regardless of the particle size, the particle volume fraction, and the Reynolds number.
文摘The effect of grain size on the flow stress in an ECAPed Ti with a constant texture was investigated,assuming that 2,4,5 and 6 passes microstructures have a similar texture.The average size of recrystallized grains decreased to 0.5 μm,0.4 μm,and 0.3 μm with respect to the ECAP pass number of 2,4,and 6,respectively.The ultimate tensile strength (UTS) and yield strength (YS) increase with an increase in the number of pressing.The UTS and YS of the 6 passes ECAPed sample were found to be 740.2 MPa and 580.3 MPa,respectively.An equation for the flow stress of an ECAPed Ti with a constant texture as a function of the strain and grain size was derived for the ECAPed metal.The following equation was finally obtained:σ(ε)=103.9+1825ε-9.6ε1/2·d-1/2+8.3d-1/2.
基金This work is financially supported by the Natural Science Foundation of Jiangsu Province, China (No. BK2001053), the International Cooperation Project Foundation of Jiangsu Province, China (No. BZ2006018), and the Science and Technol-ogy Project Foundation of Changzhou, China (No. CZ2006008).
文摘Equal-channel angular pressing (ECAP) process was applied to a 12 mm ×12 mm ×80 mm billet of pure copper (99.98 wt.%) at room temperature. The shear deformation characteristics, microstructure evolution, and tensile properties were investigated. A combination of high strength (-420 MPa) and high elongation to failure (-25%) was achieved after eight ECAP passes at room temperature. The mixing of ultrafme grains (-0.2 μm) with nanocrystalline grains (-80 nm) resulted in high tensile strength and ductility.
基金the Research Council and the Vice Chancellor of Research Affairs of Islamic Azad Universitythe University Putra Malaysia for its support
文摘In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applied stresses using fatigue tests, fractography, and metallography. The mechanical properties of the extruded material were obtained at a tensile test velocity of 0.5 mm/min. It was found that the maximum increase in strength occurred after the 2nd pass. The total increase in ultimate strength after eight passes was 94%. The results of fatigue tests indicated that a significant improvement in fatigue life occurred after the 2nd pass. In subsequent passes, the fatigue life con-tinued to improve but at a considerably lower rate. The improved fatigue life was dependent on the number of passes and applied stresses. For low stresses (or high-cycle fatigue), a maximum increase in fatigue resistance of approximately 500%was observed for the extruded material after eight passes, whereas a maximum fatigue resistance of 5000%was obtained for high-applied stresses (or low-cycle fatigue). Optical microscopic examinations revealed grain refinements in the range of 32 to 4 μm. A maximum increase in impact energy absorption of 100%was achieved after eight passes. Consistent results were obtained from fractography and metallography examinations of the ex-truded material during fatigue tests.
文摘This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected.
基金the Faculty of Engineering, University Putra Malaysia (UPM) for its supportthe Research Council and the Vice Chancellor of Research Affairs of Islamic Azad University, Takestan Branch, for their financial support
文摘The purpose of this investigation was to refine the grains of annealed 6063 aluminum alloy and to improve its yield stress and ul- timate strength. This was accomplished via the equal channel angular extrusion (ECAE) process at a temperature of 200℃ using route A, with a constant ram speed of 30 mm/min through a die angle of 90° between the die channels for as many as 6 passes. The experiments were conducted on an Avery universal testing machine. The results showed that the grain diameter decreased from 45 μm to 2.8 μm after 6 extru- sion passes. The results also indicated that the major improvement in fatigue resistance occurred after the first pass. The subsequent passes improved the fatigue life but at a considerably lower rate. A maximum increase of 1100% in the case of low applied stresses and an ap- proximately 2200% increase in fatigue resistance in the case of high applied stresses were observed after 5 passes. The improvement of fa- tigue resistance is presumed to be due to (1) a reduction in the size and the number of Si crystals with increasing number of ECAE passes, (2) the aggregation of Cu during the ECAE process, (3) the formation and growth of CuA12 grains, and (4) grain refinement of the A1--6063 alloy during the ECAE process.