For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa...For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.展开更多
Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and ...Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and high energy consumption,leading to complex Hybrid Precoding(HP)designs.To address these issues,we propose a new low-complexity HP model,named Dynamic Hybrid Relay Reflecting RIS based Hybrid Precoding(DHRR-RIS-HP).Our approach combines active and passive elements to cancel out the downsides of both conventional designs.We first design a DHRR-RIS and optimize the pilot and Channel State Information(CSI)estimation using an adaptive threshold method and Adaptive Back Propagation Neural Network(ABPNN)algorithm,respectively,to reduce the Bit Error Rate(BER)and energy consumption.To optimize the data stream,we cluster them into private and public streams using Enhanced Fuzzy C-Means(EFCM)algorithm,and schedule them based on priority and emergency level.To maximize the sum rate and SE,we perform digital precoder optimization at the Base Station(BS)side using Deep Deterministic Policy Gradient(DDPG)algorithm and analog precoder optimization at the DHRR-RIS using Fire Hawk Optimization(FHO)algorithm.We implement our proposed work using MATLAB R2020a and compare it with existing works using several validation metrics.Our results show that our proposed work outperforms existing works in terms of SE,Weighted Sum Rate(WSR),and BER.展开更多
基金funded by Taif University Researchers Supporting Project No.(TURSP-2020/214),Taif University,Taif,Saudi Arabia。
文摘For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.
文摘Reconfigurable Intelligent Surfaces(RIS)have emerged as a promising technology for improving the reliability of massive MIMO communication networks.However,conventional RIS suffer from poor Spectral Efficiency(SE)and high energy consumption,leading to complex Hybrid Precoding(HP)designs.To address these issues,we propose a new low-complexity HP model,named Dynamic Hybrid Relay Reflecting RIS based Hybrid Precoding(DHRR-RIS-HP).Our approach combines active and passive elements to cancel out the downsides of both conventional designs.We first design a DHRR-RIS and optimize the pilot and Channel State Information(CSI)estimation using an adaptive threshold method and Adaptive Back Propagation Neural Network(ABPNN)algorithm,respectively,to reduce the Bit Error Rate(BER)and energy consumption.To optimize the data stream,we cluster them into private and public streams using Enhanced Fuzzy C-Means(EFCM)algorithm,and schedule them based on priority and emergency level.To maximize the sum rate and SE,we perform digital precoder optimization at the Base Station(BS)side using Deep Deterministic Policy Gradient(DDPG)algorithm and analog precoder optimization at the DHRR-RIS using Fire Hawk Optimization(FHO)algorithm.We implement our proposed work using MATLAB R2020a and compare it with existing works using several validation metrics.Our results show that our proposed work outperforms existing works in terms of SE,Weighted Sum Rate(WSR),and BER.