Ad hoc on-demand distance vector( AODV) routing is one of the typical reactive routing protocols of vehicular ad hoc networks( VANET). Considering link stability and channel switching can greatly improve the QoS of pr...Ad hoc on-demand distance vector( AODV) routing is one of the typical reactive routing protocols of vehicular ad hoc networks( VANET). Considering link stability and channel switching can greatly improve the QoS of protocols,in this paper,we propose a novel routing protocol: optimized cross-layer AODV( CL_ AODV) designed for VANET. It utilizes the frame transmission efficiency( FTE),path bandwidth in media access control( MAC) layer and signal-to-noise ratio( SNIR) in physical( PHY) layer to improve the link stability. In other words,it can increase packet delivery ratio effectively. In addition,end-to-end delay will be decreased based on the channel switching. According to the simulation,it is shown that the packet delivery ratio of CL_AODV is almost up to 99% and the highest compared to AODV and muti-constrained QoS AODV( MQ_ AODV). The delay of CL_AODV is almost half of MQ_ AODV's and 1 /3 of AODV's.Meanwhile,CL_AODV has the highest routing overhead or energy consuming. Because of the feature of VANET,the disadvantage can be ignored.展开更多
In Ambient Assistant Living(AAL) systems, it is a fundamental problem to ensure prompt delivery of detected events, such as irregular heart rate or fall of elderly, to a central processing device(e.g. gateway node). M...In Ambient Assistant Living(AAL) systems, it is a fundamental problem to ensure prompt delivery of detected events, such as irregular heart rate or fall of elderly, to a central processing device(e.g. gateway node). Most of recently proposed MAC protocols for low-power embedded sensing systems(e.g. wireless sensor networks) are designed with energy efficiency as the first goal, so they are not suitable for AAL systems. Although some multi-channel MAC protocols have been proposed to address the problem, most of those protocols ignore the cost of channel switching, which can have reverse effect on network performance, especially latency of data delivery. In this paper, we propose a Delay-Sensitive Multi-channel MAC protocol(DS-MMAC) for AAL systems, which can provide high packet delivery ratio and bound low latency for data delivered to the gateway node. The novelty of the protocol is that an efficient distributed time slot scheduling and channel assignment algorithm is combined with the process of route establishment, which takes the channel switching cost into account and reduces endto-end delay to meet the required delay bound of each data flow. The performance of the proposed protocol is evaluated through extensive simulations. Results show that DS-MMAC can bound low latency for delivering detected events in AAL system to the gateway, while providing high delivery reliability and low energy consumption.展开更多
Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big ...Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big saddle homoclinic orbit type to the saddle node on an invariant circle type, and the saddle node on an invariant circle type to the small saddle homoclinic orbit type. The bifurcation transitions are accompanied by an increase in thermodynamic temperature that affects the voltage-gated ion channel in the neural oscillator. We show that nonlinear and thermodynamical mechanisms are responsible for different switches of the frequency in the neural oscillator. We report a dynamical role of the phase response curve in switches of the frequency, in terms of slopes of frequency-temperature curve at each bifurcation transition. Adopting the transition state theory of voltagegated ion channel dynamics, we confirm that switches of the frequency occur in the first-order phase transition temperature states and exhibit different features of their potential energy derivatives in the ion channel. Each bifurcation transition also creates a discontinuity in the Arrhenius plot used to compute the time constant of the ion channel.展开更多
Vehicular ad hoc network is a solution for increasing road traffic demand.Non-safety messages are sent during the service channel interval.The slots during which the messages are sent are not decided prior to the tran...Vehicular ad hoc network is a solution for increasing road traffic demand.Non-safety messages are sent during the service channel interval.The slots during which the messages are sent are not decided prior to the transmission.If the reservation of slots is done during the control channel interval,then the non-safety messages can be transmitted without any collision and thus the network performance can be improved.Further,to improve the network performance,the safety packets can be scheduled in the queue according to the time remaining for which sender and receiver are in the range of each other.This work proposes and evaluates the performance of safety message scheduling and infotainment message reservation through a MAC protocol SSIR-MAC to ensure network stability by transmitting beacons without any collision.The safety messages are queued according to their deadline and the slots for the transmission of non-safety packets are reserved during the control channel itself.Further,a hybrid queue is proposed to decrease the delay of enqueue and dequeue operations.Evaluation through extensive simulation results demonstrates the strength of SSIR-MAC.Comparisons are made with IEEE 802.11p standard and with two existing protocols which are relevant to the proposed work.展开更多
In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data tr...In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data transmission to benefit the capability of overcoming the fragility of networks commonly configured by a single channel in the communication networks subject to random packet losses. In light of a new class of Lyapunov functions, the desired observer-based quasi-time-dependent controllers, which have less conservatism than the time-independent ones, are designed such that the resulting closed-loop system is exponentially mean-square stable with a guaranteed H_∞ disturbance attenuation performance. The MPDT can be minimized while ensuring the existence of such a class of observer-based controllers for a given period of persistence. An example of DC-DC boost converter is provided to verify the effectiveness of theoretical findings.展开更多
基金National Natural Science Foundation of China(No.71171045)
文摘Ad hoc on-demand distance vector( AODV) routing is one of the typical reactive routing protocols of vehicular ad hoc networks( VANET). Considering link stability and channel switching can greatly improve the QoS of protocols,in this paper,we propose a novel routing protocol: optimized cross-layer AODV( CL_ AODV) designed for VANET. It utilizes the frame transmission efficiency( FTE),path bandwidth in media access control( MAC) layer and signal-to-noise ratio( SNIR) in physical( PHY) layer to improve the link stability. In other words,it can increase packet delivery ratio effectively. In addition,end-to-end delay will be decreased based on the channel switching. According to the simulation,it is shown that the packet delivery ratio of CL_AODV is almost up to 99% and the highest compared to AODV and muti-constrained QoS AODV( MQ_ AODV). The delay of CL_AODV is almost half of MQ_ AODV's and 1 /3 of AODV's.Meanwhile,CL_AODV has the highest routing overhead or energy consuming. Because of the feature of VANET,the disadvantage can be ignored.
基金supported by the International S&T Cooperation Program of China (ISTCP) under Grant No. 2013DFA10690the National Science Foundation of China (NSFC) under Grant No. 61100180
文摘In Ambient Assistant Living(AAL) systems, it is a fundamental problem to ensure prompt delivery of detected events, such as irregular heart rate or fall of elderly, to a central processing device(e.g. gateway node). Most of recently proposed MAC protocols for low-power embedded sensing systems(e.g. wireless sensor networks) are designed with energy efficiency as the first goal, so they are not suitable for AAL systems. Although some multi-channel MAC protocols have been proposed to address the problem, most of those protocols ignore the cost of channel switching, which can have reverse effect on network performance, especially latency of data delivery. In this paper, we propose a Delay-Sensitive Multi-channel MAC protocol(DS-MMAC) for AAL systems, which can provide high packet delivery ratio and bound low latency for data delivered to the gateway node. The novelty of the protocol is that an efficient distributed time slot scheduling and channel assignment algorithm is combined with the process of route establishment, which takes the channel switching cost into account and reduces endto-end delay to meet the required delay bound of each data flow. The performance of the proposed protocol is evaluated through extensive simulations. Results show that DS-MMAC can bound low latency for delivering detected events in AAL system to the gateway, while providing high delivery reliability and low energy consumption.
基金Supported by JST,CREST,and JSPS KAKENHI under Grant No 15H05919
文摘Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big saddle homoclinic orbit type to the saddle node on an invariant circle type, and the saddle node on an invariant circle type to the small saddle homoclinic orbit type. The bifurcation transitions are accompanied by an increase in thermodynamic temperature that affects the voltage-gated ion channel in the neural oscillator. We show that nonlinear and thermodynamical mechanisms are responsible for different switches of the frequency in the neural oscillator. We report a dynamical role of the phase response curve in switches of the frequency, in terms of slopes of frequency-temperature curve at each bifurcation transition. Adopting the transition state theory of voltagegated ion channel dynamics, we confirm that switches of the frequency occur in the first-order phase transition temperature states and exhibit different features of their potential energy derivatives in the ion channel. Each bifurcation transition also creates a discontinuity in the Arrhenius plot used to compute the time constant of the ion channel.
文摘Vehicular ad hoc network is a solution for increasing road traffic demand.Non-safety messages are sent during the service channel interval.The slots during which the messages are sent are not decided prior to the transmission.If the reservation of slots is done during the control channel interval,then the non-safety messages can be transmitted without any collision and thus the network performance can be improved.Further,to improve the network performance,the safety packets can be scheduled in the queue according to the time remaining for which sender and receiver are in the range of each other.This work proposes and evaluates the performance of safety message scheduling and infotainment message reservation through a MAC protocol SSIR-MAC to ensure network stability by transmitting beacons without any collision.The safety messages are queued according to their deadline and the slots for the transmission of non-safety packets are reserved during the control channel itself.Further,a hybrid queue is proposed to decrease the delay of enqueue and dequeue operations.Evaluation through extensive simulation results demonstrates the strength of SSIR-MAC.Comparisons are made with IEEE 802.11p standard and with two existing protocols which are relevant to the proposed work.
基金supported by the National Natural Science Foundation of China(Grant No.61322301)the Natural Science Foundation of Heilongjiang(Grant Nos.F201417&JC2015015)+1 种基金the Fundamental Research Funds for the Central UniversitiesChina(Grant Nos.HIT.BRETIII.201211&HIT.BRETIV.201306)
文摘In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data transmission to benefit the capability of overcoming the fragility of networks commonly configured by a single channel in the communication networks subject to random packet losses. In light of a new class of Lyapunov functions, the desired observer-based quasi-time-dependent controllers, which have less conservatism than the time-independent ones, are designed such that the resulting closed-loop system is exponentially mean-square stable with a guaranteed H_∞ disturbance attenuation performance. The MPDT can be minimized while ensuring the existence of such a class of observer-based controllers for a given period of persistence. An example of DC-DC boost converter is provided to verify the effectiveness of theoretical findings.