Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)frac...The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.展开更多
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a...In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s...Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.展开更多
This paper explores the connotations of mathematical aesthetics and its connections with art,facilitated by collaboration with Ester,an individual with an artistic professional background.It begins by tracing the hist...This paper explores the connotations of mathematical aesthetics and its connections with art,facilitated by collaboration with Ester,an individual with an artistic professional background.It begins by tracing the historical evolution of aesthetics from the classical pursuit of authenticity to the modern shift toward self-expression in art.The discussion then highlights the similarities in the pursuit of truth between mathematics and art,despite their methodological differences.Through an analysis of aesthetic elements in mathematics,such as lines and function graphs,the article illustrates that the beauty of mathematics is not only manifested in cognitive processes but can also be intuitively expressed through visual arts.The paper further examines the influence of mathematics on the development of art,particularly how Leonardo da Vinci applied mathematical principles to his artworks.Additionally,the article addresses art students’perceptions of mathematics,proposes the customization of math courses for art students,and discusses future trends in the integration of mathematics and art,emphasizing the significance of art therapy and the altruistic direction of art.Lastly,the authors use a poster to visually convey the idea that the beauty of mathematics can be experienced through the senses.展开更多
The integration of the history of mathematics into junior middle school mathematics education represents a significant focus of international research in mathematics and education.The mathematics curriculum standards ...The integration of the history of mathematics into junior middle school mathematics education represents a significant focus of international research in mathematics and education.The mathematics curriculum standards for compulsory education have emphasized the importance of incorporating the history of mathematics,aiming to gradually integrate it into the mathematics classroom.However,in the practical implementation of junior middle school mathematics education,the effective combination of the history of mathematics with teaching methodologies remains largely unexplored.This article explores the integration of junior middle school mathematics education and the history of mathematics,aiming to provide classroom teaching recommendations for teachers and promote the formation of students’mathematical literacy.展开更多
Assessment exercises constitute a crucial component of the teaching and learning process,serving the purpose of gauging the degree to which learning objectives have been accomplished.This study aims to assess the math...Assessment exercises constitute a crucial component of the teaching and learning process,serving the purpose of gauging the degree to which learning objectives have been accomplished.This study aims to assess the mathematics performance of Grade 7 learners using the 50-30-20 exercise.Specifically,this study seeks to determine the learners’pre-test and post-test mean scores,identify significant differences between the pre-test and post-test results,evaluate learners’exercises,and propose enhanced exercises.The research employs a quasi-experimental design,with 40 Grade 7 learners in the school year 2023-2024 as participants,selected through purposive non-random sampling.Statistical data analysis involves the use of mean,standard deviation,paired t-test,and Cohen’s D effect size.Ethical considerations were paramount,as evidenced by a letter of authorization from the school head outlining the strict adherence to voluntary participation,informed parental consent,anonymity,confidentiality,risk mitigation,results-sharing protocols,and the commitment to keeping research data confidential.The data yielded a remarkable outcome:the experimental group exhibited improvement in both the pre-test and post-test.This result substantiates the initial objective of the study,showcasing a noteworthy and favorable performance among the participants.Consequently,it suggests that a majority of the participants strongly agree that the 50-30-20 exercises contribute to enhancing their understanding and problem-solving skills,as well as their ability to grasp mathematical concepts and improve their overall performance in mathematics.Therefore,the 50-30-20 exercises not only facilitated students in understanding mathematics lessons but were also aligned with the Department of Education’s development plan.展开更多
Since the new century,China’s mathematics curriculum reform in basic education has continued to move forward in attempts and explorations,presenting many new changes,trends,movements,and developments.Sorting out,anal...Since the new century,China’s mathematics curriculum reform in basic education has continued to move forward in attempts and explorations,presenting many new changes,trends,movements,and developments.Sorting out,analyzing,and summarizing the achievements,experiences,problems,and challenges in this journey are conducive to providing insights for the reform and development of the Chinese basic education mathematics curriculum in the new era.This paper analyses the research on mathematics education in China(1999-2024)using the visual measurement of CiteSpace knowledge mapping,hoping to provide directions for the future of mathematics education in China.展开更多
The“Ordinary High School Mathematics Curriculum Standards(2017 Edition,2020 Revision)”clearly stated in“Teaching Suggestions”that“teaching activities based on the core literacy of mathematics should grasp the ess...The“Ordinary High School Mathematics Curriculum Standards(2017 Edition,2020 Revision)”clearly stated in“Teaching Suggestions”that“teaching activities based on the core literacy of mathematics should grasp the essence of mathematics,create appropriate teaching situations,put forward appropriate mathematical questions,stimulate students to think and communicate,and form and develop the core literacy of mathematics.”The task-driven teaching model is a new type of teaching method that takes tasks as the main line,teachers as the guide,and students as the main body,which can enable students to engage deeply in classroom discussions and think actively.Based on the characteristics and principles of the task-driven teaching method,this paper designs a high school mathematics classroom teaching based on the task-driven teaching method,hoping to provide a reference for the majority of front-line teachers.展开更多
At present,textbooks based on core literacy have become the inevitable demands of China’s curriculum reform,and the literacy of textbook goal construction is the key to the implementation of core literacy requirement...At present,textbooks based on core literacy have become the inevitable demands of China’s curriculum reform,and the literacy of textbook goal construction is the key to the implementation of core literacy requirements,which is a huge challenge for textbook compilers.In this paper,we use the visual metrology of the CiteSpace knowledge graph to analyze Chinese mathematics textbooks(1999-2024),hoping to guide the future direction of Chinese mathematics textbook research.展开更多
Under the background of digital transformation,the reform of the higher vocational mathematics curriculum faces urgent challenges and opportunities.This article explores the impact of digital transformation on the ref...Under the background of digital transformation,the reform of the higher vocational mathematics curriculum faces urgent challenges and opportunities.This article explores the impact of digital transformation on the reform of higher vocational mathematics curriculum and emphasizes the importance of improving teaching methods centered on learners.The article proposes specific reform methods and discusses the practical application of digital technology in the reform process.By combining digital technology with specific reform methods,further conducting innovative practice research,and continuously exploring the path of reform,we can effectively improve the quality of higher vocational mathematics classroom teaching and provide strong support for the cultivation of comprehensive qualities and employment abilities.展开更多
With the continuous development of China’s education,the social requirements for high school teaching are constantly improving.The teaching of high school mathematics is a key point in the high school curriculum,but ...With the continuous development of China’s education,the social requirements for high school teaching are constantly improving.The teaching of high school mathematics is a key point in the high school curriculum,but also a major difficulty.Due to the strong logic and abstraction of the content of high school mathematics,some students find it very difficult to learn.In order to solve this problem,high school mathematics teachers can make use of mind maps to teach,so that students can exercise their thinking ability,and realize the improvement of comprehensive ability in mathematics.This paper analyzes the shortcomings of high school mathematics classrooms under the background of new curriculum reform and discusses the significance and methods of applying mind maps in high school mathematics classrooms,so as to put forward reasonable suggestions for realizing the efficient teaching of high school mathematics.展开更多
The innovation competence of K-12 education teachers undoubtedly plays a crucial role in fostering the innovation abilities of their students.K-12 mathematics education equips students with the critical thinking and p...The innovation competence of K-12 education teachers undoubtedly plays a crucial role in fostering the innovation abilities of their students.K-12 mathematics education equips students with the critical thinking and problem-solving skills essential for their future studies in colleges and universities,helping them grasp complex techniques to address challenges in everyday life and their careers.Therefore,it is of great significance to study strategies for improving the innovation competence of college students majoring in Mathematics Education,as they will likely become K-12 education mathematics teachers directly after graduating from colleges or universities.In this paper,we study strategies for enhancing the innovation competence of college students majoring in Mathematics Education through curriculum optimization.We analyze and explain in detail the importance of innovation competence for college students majoring in Mathematics Education and the difficulties encountered in enhancing college students’innovation competence.With the help of the analysis of the importance and challenges of enhancing college students’innovation competence,we propose several strategies to improve the innovation competence of college students majoring in Mathematics Education based on curriculum optimization.The findings presented in this paper can be applied to develop strategies for college students majoring in Physics and Chemistry Education.展开更多
The professional and moral education of high school mathematics teachers will make classroom management work better,but their work pressure will also lead to classroom management problems.To do a good job in high scho...The professional and moral education of high school mathematics teachers will make classroom management work better,but their work pressure will also lead to classroom management problems.To do a good job in high school class teacher management and organically integrate it with mathematics teaching,we need to start from two aspects:mathematics teaching class teachers and class teacher work teaching,and penetrate mathematical thinking into daily classroom management,moral education,and classroom culture construction.Based on the attributes of the subject,we guide high school students to reflect after class to stimulate their self-management initiative through the cultivation of qualified class representatives.In addition,it is necessary to skillfully resolve classroom generative problems,change the roles of teachers and students,and integrate classroom management with mathematics teaching.展开更多
Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opport...Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.展开更多
Learning mathematics requires an effective and strategic teaching approach.This study aimed to assess the mathematics performance of the learners with the implementation of the numeracy enhancement strategy QD2R(Quest...Learning mathematics requires an effective and strategic teaching approach.This study aimed to assess the mathematics performance of the learners with the implementation of the numeracy enhancement strategy QD2R(Questions,Drills,Repetition,and Recitation)and to propose a strategy implementation plan to elevate their performances.This study employed the use of a quasi-experimental research design,purposive sampling with 70 Grade 10 students of Lian National High School who were distributed equally to control and treatment groups.The pre-test and post-test results were statistically analyzed using independent and paired sample t-tests,and a survey questionnaire was examined by getting the mean and standard deviation.The results indicated that better performance was achieved by the students from the treatment group compared to the students from the control group,as revealed by the Mean Percentage Score(MPS)results,mean scores,and P values of their pre-test and post-test scores.The learners’perception of the implementation of this strategy was to a great extent,wherein it was perceived to be more helpful in concepts related to understanding the lesson compared to concepts related to developing their attitude and skills.Moreover,the proposed implementation plan of numeracy enhancement strategy QD2R had three expected outcomes:elevated understanding and performance in mathematics lessons;modified strategy to focus on the development of attitude and skills towards mathematics;and refined and well-implemented QD2R strategy in teaching mathematics.Relative to these expected outcomes,appropriate measures,timeframe,and resources of each were comprehensively formulated.展开更多
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
文摘The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.62102444)a Major Research Project in Higher Education Institutions in Henan Province(No.23A560015).
文摘In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups(Grant Number RGP.2/246/44),B.B.,and https://www.kku.edu.sa/en.
文摘Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
文摘This paper explores the connotations of mathematical aesthetics and its connections with art,facilitated by collaboration with Ester,an individual with an artistic professional background.It begins by tracing the historical evolution of aesthetics from the classical pursuit of authenticity to the modern shift toward self-expression in art.The discussion then highlights the similarities in the pursuit of truth between mathematics and art,despite their methodological differences.Through an analysis of aesthetic elements in mathematics,such as lines and function graphs,the article illustrates that the beauty of mathematics is not only manifested in cognitive processes but can also be intuitively expressed through visual arts.The paper further examines the influence of mathematics on the development of art,particularly how Leonardo da Vinci applied mathematical principles to his artworks.Additionally,the article addresses art students’perceptions of mathematics,proposes the customization of math courses for art students,and discusses future trends in the integration of mathematics and art,emphasizing the significance of art therapy and the altruistic direction of art.Lastly,the authors use a poster to visually convey the idea that the beauty of mathematics can be experienced through the senses.
基金The Discipline Resource Construction Project of Jiangsu Second Normal University(Project number:JSSNU03202222)。
文摘The integration of the history of mathematics into junior middle school mathematics education represents a significant focus of international research in mathematics and education.The mathematics curriculum standards for compulsory education have emphasized the importance of incorporating the history of mathematics,aiming to gradually integrate it into the mathematics classroom.However,in the practical implementation of junior middle school mathematics education,the effective combination of the history of mathematics with teaching methodologies remains largely unexplored.This article explores the integration of junior middle school mathematics education and the history of mathematics,aiming to provide classroom teaching recommendations for teachers and promote the formation of students’mathematical literacy.
文摘Assessment exercises constitute a crucial component of the teaching and learning process,serving the purpose of gauging the degree to which learning objectives have been accomplished.This study aims to assess the mathematics performance of Grade 7 learners using the 50-30-20 exercise.Specifically,this study seeks to determine the learners’pre-test and post-test mean scores,identify significant differences between the pre-test and post-test results,evaluate learners’exercises,and propose enhanced exercises.The research employs a quasi-experimental design,with 40 Grade 7 learners in the school year 2023-2024 as participants,selected through purposive non-random sampling.Statistical data analysis involves the use of mean,standard deviation,paired t-test,and Cohen’s D effect size.Ethical considerations were paramount,as evidenced by a letter of authorization from the school head outlining the strict adherence to voluntary participation,informed parental consent,anonymity,confidentiality,risk mitigation,results-sharing protocols,and the commitment to keeping research data confidential.The data yielded a remarkable outcome:the experimental group exhibited improvement in both the pre-test and post-test.This result substantiates the initial objective of the study,showcasing a noteworthy and favorable performance among the participants.Consequently,it suggests that a majority of the participants strongly agree that the 50-30-20 exercises contribute to enhancing their understanding and problem-solving skills,as well as their ability to grasp mathematical concepts and improve their overall performance in mathematics.Therefore,the 50-30-20 exercises not only facilitated students in understanding mathematics lessons but were also aligned with the Department of Education’s development plan.
文摘Since the new century,China’s mathematics curriculum reform in basic education has continued to move forward in attempts and explorations,presenting many new changes,trends,movements,and developments.Sorting out,analyzing,and summarizing the achievements,experiences,problems,and challenges in this journey are conducive to providing insights for the reform and development of the Chinese basic education mathematics curriculum in the new era.This paper analyses the research on mathematics education in China(1999-2024)using the visual measurement of CiteSpace knowledge mapping,hoping to provide directions for the future of mathematics education in China.
文摘The“Ordinary High School Mathematics Curriculum Standards(2017 Edition,2020 Revision)”clearly stated in“Teaching Suggestions”that“teaching activities based on the core literacy of mathematics should grasp the essence of mathematics,create appropriate teaching situations,put forward appropriate mathematical questions,stimulate students to think and communicate,and form and develop the core literacy of mathematics.”The task-driven teaching model is a new type of teaching method that takes tasks as the main line,teachers as the guide,and students as the main body,which can enable students to engage deeply in classroom discussions and think actively.Based on the characteristics and principles of the task-driven teaching method,this paper designs a high school mathematics classroom teaching based on the task-driven teaching method,hoping to provide a reference for the majority of front-line teachers.
文摘At present,textbooks based on core literacy have become the inevitable demands of China’s curriculum reform,and the literacy of textbook goal construction is the key to the implementation of core literacy requirements,which is a huge challenge for textbook compilers.In this paper,we use the visual metrology of the CiteSpace knowledge graph to analyze Chinese mathematics textbooks(1999-2024),hoping to guide the future direction of Chinese mathematics textbook research.
基金Classroom Revolution Special Project for Teaching Construction and Reform at Jiangsu Vocational College of Electronics and Information(JX-G-2023-04)。
文摘Under the background of digital transformation,the reform of the higher vocational mathematics curriculum faces urgent challenges and opportunities.This article explores the impact of digital transformation on the reform of higher vocational mathematics curriculum and emphasizes the importance of improving teaching methods centered on learners.The article proposes specific reform methods and discusses the practical application of digital technology in the reform process.By combining digital technology with specific reform methods,further conducting innovative practice research,and continuously exploring the path of reform,we can effectively improve the quality of higher vocational mathematics classroom teaching and provide strong support for the cultivation of comprehensive qualities and employment abilities.
文摘With the continuous development of China’s education,the social requirements for high school teaching are constantly improving.The teaching of high school mathematics is a key point in the high school curriculum,but also a major difficulty.Due to the strong logic and abstraction of the content of high school mathematics,some students find it very difficult to learn.In order to solve this problem,high school mathematics teachers can make use of mind maps to teach,so that students can exercise their thinking ability,and realize the improvement of comprehensive ability in mathematics.This paper analyzes the shortcomings of high school mathematics classrooms under the background of new curriculum reform and discusses the significance and methods of applying mind maps in high school mathematics classrooms,so as to put forward reasonable suggestions for realizing the efficient teaching of high school mathematics.
基金Innovation and Entrepreneurship Education Reform Research Program of Suqian University(2023cxcy08)Startup Foundation for Newly Recruited Employees and the Xichu Talents Foundation of Suqian University(2022XRC033)+4 种基金Professional Certification Oriented Teaching Reform Research Special Program of Suqian University(2023ZYRZ04)Qing Lan Project of Jiangsu“High Quality Public Course Teaching Reform”Special Program for Colleges and Universities of Jiangsu(2022JDKT106)Higher Education Reform Research Project of Jiangsu(2023JSJG718)Higher Education Scientific Research Planning Project of the Higher Education Association of China(23SX0203)。
文摘The innovation competence of K-12 education teachers undoubtedly plays a crucial role in fostering the innovation abilities of their students.K-12 mathematics education equips students with the critical thinking and problem-solving skills essential for their future studies in colleges and universities,helping them grasp complex techniques to address challenges in everyday life and their careers.Therefore,it is of great significance to study strategies for improving the innovation competence of college students majoring in Mathematics Education,as they will likely become K-12 education mathematics teachers directly after graduating from colleges or universities.In this paper,we study strategies for enhancing the innovation competence of college students majoring in Mathematics Education through curriculum optimization.We analyze and explain in detail the importance of innovation competence for college students majoring in Mathematics Education and the difficulties encountered in enhancing college students’innovation competence.With the help of the analysis of the importance and challenges of enhancing college students’innovation competence,we propose several strategies to improve the innovation competence of college students majoring in Mathematics Education based on curriculum optimization.The findings presented in this paper can be applied to develop strategies for college students majoring in Physics and Chemistry Education.
文摘The professional and moral education of high school mathematics teachers will make classroom management work better,but their work pressure will also lead to classroom management problems.To do a good job in high school class teacher management and organically integrate it with mathematics teaching,we need to start from two aspects:mathematics teaching class teachers and class teacher work teaching,and penetrate mathematical thinking into daily classroom management,moral education,and classroom culture construction.Based on the attributes of the subject,we guide high school students to reflect after class to stimulate their self-management initiative through the cultivation of qualified class representatives.In addition,it is necessary to skillfully resolve classroom generative problems,change the roles of teachers and students,and integrate classroom management with mathematics teaching.
基金Henan Province 2022 Teacher Education Curriculum Reform Research Project:Research on Improving the Teaching Practice Ability of Mathematics Normal University Students under the OBE Concept(Project number:2022-JSJYZD-009)A Study on the Measurement and Development of Mathematics Core Literacy for Secondary School Students,Doctoral Research Initiation Fee of Henan Normal University(Project number:20230234)Henan Normal University Graduate Quality Course Program,Mathematical Planning I(Project number:YJS2022KC02)。
文摘Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.
文摘Learning mathematics requires an effective and strategic teaching approach.This study aimed to assess the mathematics performance of the learners with the implementation of the numeracy enhancement strategy QD2R(Questions,Drills,Repetition,and Recitation)and to propose a strategy implementation plan to elevate their performances.This study employed the use of a quasi-experimental research design,purposive sampling with 70 Grade 10 students of Lian National High School who were distributed equally to control and treatment groups.The pre-test and post-test results were statistically analyzed using independent and paired sample t-tests,and a survey questionnaire was examined by getting the mean and standard deviation.The results indicated that better performance was achieved by the students from the treatment group compared to the students from the control group,as revealed by the Mean Percentage Score(MPS)results,mean scores,and P values of their pre-test and post-test scores.The learners’perception of the implementation of this strategy was to a great extent,wherein it was perceived to be more helpful in concepts related to understanding the lesson compared to concepts related to developing their attitude and skills.Moreover,the proposed implementation plan of numeracy enhancement strategy QD2R had three expected outcomes:elevated understanding and performance in mathematics lessons;modified strategy to focus on the development of attitude and skills towards mathematics;and refined and well-implemented QD2R strategy in teaching mathematics.Relative to these expected outcomes,appropriate measures,timeframe,and resources of each were comprehensively formulated.