The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the cha...The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
Coronary artery systems are a kind of complex biological systems. Their chaotic phenomena can lead to serious health problems and illness development. From the perspective of engineering, this paper investigates the c...Coronary artery systems are a kind of complex biological systems. Their chaotic phenomena can lead to serious health problems and illness development. From the perspective of engineering, this paper investigates the chaos suppression problem. At first, nonlinear dynamics of coronary artery systems are presented. To suppress the chaotic phenomena, the method of derivative-integral terminal sliding mode control is adopted. Since coronary artery systems suffer from uncertainties, the technique of disturbance observer is taken into consideration. The stability of such a control system that integrates the derivative-integral terminal sliding mode controller and the disturbance observer is proven in the sense of Lyapunov. To verify the feasibility and effectiveness of the proposed strategy, simulation results are illustrated in comparison with a benchmark.展开更多
This paper presents observer-based chaos suppression for a four-echelon supply chain system based on fractional order calculus.As the market information is usually distorted,nonlinear observers for supply chain model ...This paper presents observer-based chaos suppression for a four-echelon supply chain system based on fractional order calculus.As the market information is usually distorted,nonlinear observers for supply chain model are implemented to accomplish chaos suppression using linear matrix inequality(L MI).Sufficient conditions for the observer-based schemes are estab-lished by using Lyapunov stbility theory.The fractional calculus is utilised to provide superior dynamic performance for the controlled supply chain system over its integer-order counterpart.Numerical simulations are performed to validate robust performance and stability of observer-based supply chain management.Finally,it is found that the presented approach can help decision-makers develop effective supply chain networks under disruptions.展开更多
文摘The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
基金supported by the Fundamental Research Funds for the Central Universities(2018MS29)
文摘Coronary artery systems are a kind of complex biological systems. Their chaotic phenomena can lead to serious health problems and illness development. From the perspective of engineering, this paper investigates the chaos suppression problem. At first, nonlinear dynamics of coronary artery systems are presented. To suppress the chaotic phenomena, the method of derivative-integral terminal sliding mode control is adopted. Since coronary artery systems suffer from uncertainties, the technique of disturbance observer is taken into consideration. The stability of such a control system that integrates the derivative-integral terminal sliding mode controller and the disturbance observer is proven in the sense of Lyapunov. To verify the feasibility and effectiveness of the proposed strategy, simulation results are illustrated in comparison with a benchmark.
文摘This paper presents observer-based chaos suppression for a four-echelon supply chain system based on fractional order calculus.As the market information is usually distorted,nonlinear observers for supply chain model are implemented to accomplish chaos suppression using linear matrix inequality(L MI).Sufficient conditions for the observer-based schemes are estab-lished by using Lyapunov stbility theory.The fractional calculus is utilised to provide superior dynamic performance for the controlled supply chain system over its integer-order counterpart.Numerical simulations are performed to validate robust performance and stability of observer-based supply chain management.Finally,it is found that the presented approach can help decision-makers develop effective supply chain networks under disruptions.