The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical n...This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.展开更多
Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We fi...Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.展开更多
Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the...Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the systems are given in matrix form, which is adequate for numerical calculation. The approach for calculating the generalized velocity and acceleration of the slider is given to determine slipping or sticking of the slider in the systems. For slip-slip and stick-slip multibody systems, their largest Lyapunov exponents are calculated to characterize their dynamics.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
We present a scheme for chaotic synchronization in two resistive- capacitive-inductive shunted Josephson junctions (RCLSJJs) by using another chaotic RCLSJJ as a driving system. Numerical simulations show that wheth...We present a scheme for chaotic synchronization in two resistive- capacitive-inductive shunted Josephson junctions (RCLSJJs) by using another chaotic RCLSJJ as a driving system. Numerical simulations show that whether the two RCLSJJs are chaotic or not before being driven, they can realize chaotic synchronization with a suitable driving intensity, under which the maximum condition Lyapunov exponent (MCLE) is negative. On the other hand, if the driving system is in different periodic states or chaotic states, the two driven RCLSJJs can be controlled into the periodic states with different period numbers or chaotic states but still maintain the synchronization.展开更多
A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some int...A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some interpretations about the underlying mechanism of various GS phenomena in nature. As a direct application of the theorem, a chaos-based secure Internet communication scheme is proposed. Moreover, a cellular neural network (CNN) of Chen's chaotic circuits with GS property is designed and studied. Numerical simulation shows that this Chen's CNN has high security and is fast and reliable for secure Internet communications.展开更多
Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realiz...Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.展开更多
In this paper, the asymptotical p-moment stability of stochastic impulsive differential equations is studied and a comparison theory to ensure the asymptotical p-moment stability of the trivial solution is established...In this paper, the asymptotical p-moment stability of stochastic impulsive differential equations is studied and a comparison theory to ensure the asymptotical p-moment stability of the trivial solution is established, which is important for studying the impulsive control and synchronization in stochastic systems. As an application of this theory, we study the problem of chaos synchronization in the Chen system excited by parameter white-noise excitation, by using the impulsive method. Numerical simulations verify the feasibility of this method.展开更多
The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term c...The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term coefficient of the separated configuration in state equation of the node are obtained through constructing an appropriate Lyapunov function. Each node of the complex network is a laser spatiotemporal chaos model in which the phase-conjugate wave and the unilateral coupled map lattice are taken as a local function and a spatially extended system, respectively. The simulation results show the effectiveness of the signal synchronization transmission principle of the network.展开更多
In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive ob...In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.展开更多
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst...The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.展开更多
This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the ...This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.展开更多
This paper introduces the finding of some chaotic attractors in a kind of n-dimensional autonomous hybrid system, which is realized via applying some discontinuous state feedback to a kind of n linear differential sys...This paper introduces the finding of some chaotic attractors in a kind of n-dimensional autonomous hybrid system, which is realized via applying some discontinuous state feedback to a kind of n linear differential system. And a constructive theorem is proposed for generalized synchronization related to the above chaotic hybrid systems. Examples are presented for illustrating the methods.展开更多
As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field...As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field in modern research.By combining memristor and time⁃delay,a delayed memristive differential system with fractional order is proposed in this paper,which can generate hidden attractors.First,we discussed the dynamics of the proposed system where the parameter was set as the bifurcation parameter,and showed that with the increase of the parameter,the system generated rich chaotic phenomena such as bifurcation,chaos,and hypherchaos.Then we derived adequate and appropriate stability criteria to guarantee the system to achieve synchronization.Lastly,examples were provided to analyze and confirm the influence of parameter a,fractional order q,and time delayτon chaos synchronization.The simulation results confirm that the chaotic synchronization is affected by a,q andτ.展开更多
In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal ...In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal with parameter uncertainty. In the second method, multi-parameter modulation is used to simultaneously transmit more than one digital message (i.e., the multichannel digital communication) through just a single signal, which switches among various chaotic attractors that differ only subtly. In theory, such a treatment increases the difficulty for the intruder to directly intercept the information, and meanwhile the implementation cost decreases significantly. In addition, numerical results show the methods are robust against weak noise, which implies their practicability.展开更多
To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coup...To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coupled system is investigated with variations of the system parameter and coupling coefficients. Particularly, the influence of coupling strength on dynamics of the coupled system is analyzed in detail. The range of the coupling strength in which the coupled system can generate hyperchaos or realize synchronization is determined, including phase portraits, Lyapunov exponents, and Poincare section. And the critical value of the system parameter between hyperchaos and synchronization is also found with fixed coupled strength. In addition, abundant dynamical behaviors such as four-wing hyperchaotic, two-wing chaotic, single-wing coexisting attractors and periodic orbits are observed and chaos synchronization error curves are also drawn by varying system parameter c. Numerical simulations are implemented to verify the results of these investigations.展开更多
The analytic criteria for the local activity theory in one-port cellularneural network (CNN) with five local state variables are presented. The application to a Hyper-chaossynchronization Chua's circuit (HCSCC) CN...The analytic criteria for the local activity theory in one-port cellularneural network (CNN) with five local state variables are presented. The application to a Hyper-chaossynchronization Chua's circuit (HCSCC) CNN with 1125 variables is studied. The bifurcation diagramsof the HCSCC CNN show that they are slightly different from the smoothed CNN with one or two portsand four state variables calculated earlier. The evolution of the patterns of the state variables ofthe HCSCC CNN is stimulated. Oscillatory patterns, chaotic patterns, convergent or divergentpatterns may emerge if the selected cell parameters are located in the locally active domains butnearby or in the edge of chaos domain.展开更多
The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior,called chaos,could happen even in a deterministic nonlinear system under barely deter...The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior,called chaos,could happen even in a deterministic nonlinear system under barely deterministic disturbance.After a series of serious studies,people begin to acknowledge that chaos is a specific type of steady state motion other than the conventional periodic and quasi-periodic ones,featuring a sensitive dependence on initial conditions,resulting from the intrinsic randomness of a nonlinear system itself.In fact,chaos is a collective phenomenon consisting of massive individual chaotic responses,corresponding to different initial conditions in phase space.Any two adjacent individual chaotic responses repel each other,thus causing not only the sensitive dependence on initial conditions but also the existence of at least one positive top Lyapunov exponent(TLE) for chaos.Meanwhile,all the sample responses share one common invariant set on the Poincaré map,called chaotic attractor,which every sample response visits from time to time ergodically.So far,the existence of at least one positive TLE is a commonly acknowledged remarkable feature of chaos.We know that there are various forms of uncertainties in the real world.In theoretical studies,people often use stochastic models to describe these uncertainties,such as random variables or random processes.Systems with random variables as their parameters or with random processes as their excitations are often called stochastic systems.No doubt,chaotic phenomena also exist in stochastic systems,which we call stochastic chaos to distinguish it from deterministic chaos in the deterministic system.Stochastic chaos reflects not only the intrinsic randomness of the nonlinear system but also the external random effects of the random parameter or the random excitation.Hence,stochastic chaos is also a collective massive phenomenon,corresponding not only to different initial conditions but also to different samples of the random parameter or the random excitation.Thus,the unique common feature of deterministic chaos and stochastic chaos is that they all have at least one positive top Lyapunov exponent for their chaotic motion.For analysis of random phenomena,one used to look for the PDFs(Probability Density Functions) of the ensemble random responses.However,it is a pity that PDF information is not favorable to studying repellency of the neighboring chaotic responses nor to calculating the related TLE,so we would rather study stochastic chaos through its sample responses.Moreover,since any sample of stochastic chaos is a deterministic one,we need not supplement any additional definition on stochastic chaos,just mentioning that every sample of stochastic chaos should be deterministic chaos.We are mainly concerned with the following two basic kinds of nonlinear stochastic systems,i.e.one with random variables as its parameters and one with ergodical random processes as its excitations.To solve the stochastic chaos problems of these two kinds of systems,we first transform the original stochastic system into their equivalent deterministic ones.Namely,we can transform the former stochastic system into an equivalent deterministic system in the sense of mean square approximation with respect to the random parameter space by the orthogonal polynomial approximation,and transform the latter one simply through replacing its ergodical random excitations by their representative deterministic samples.Having transformed the original stochastic chaos problem into the deterministic chaos problem of equivalent systems,we can use all the available effective methods for further chaos analysis.In this paper,we aim to review the state of art of studying stochastic chaos with its control and synchronization by the above-mentioned strategy.展开更多
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
基金Project supported by the Natural Science Foundation of Liaoning Province,China(Grant No.20082147)the Innovative Team Program of Liaoning Educational Committee,China(Grant No.2008T108)
文摘This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.
文摘Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.
基金The project supported by the National Natural Science Foundation of China (10272008 and 10371030)The English text was polished by Yunming Chen
文摘Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the systems are given in matrix form, which is adequate for numerical calculation. The approach for calculating the generalized velocity and acceleration of the slider is given to determine slipping or sticking of the slider in the systems. For slip-slip and stick-slip multibody systems, their largest Lyapunov exponents are calculated to characterize their dynamics.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
文摘We present a scheme for chaotic synchronization in two resistive- capacitive-inductive shunted Josephson junctions (RCLSJJs) by using another chaotic RCLSJJ as a driving system. Numerical simulations show that whether the two RCLSJJs are chaotic or not before being driven, they can realize chaotic synchronization with a suitable driving intensity, under which the maximum condition Lyapunov exponent (MCLE) is negative. On the other hand, if the driving system is in different periodic states or chaotic states, the two driven RCLSJJs can be controlled into the periodic states with different period numbers or chaotic states but still maintain the synchronization.
文摘A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some interpretations about the underlying mechanism of various GS phenomena in nature. As a direct application of the theorem, a chaos-based secure Internet communication scheme is proposed. Moreover, a cellular neural network (CNN) of Chen's chaotic circuits with GS property is designed and studied. Numerical simulation shows that this Chen's CNN has high security and is fast and reliable for secure Internet communications.
文摘Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘In this paper, the asymptotical p-moment stability of stochastic impulsive differential equations is studied and a comparison theory to ensure the asymptotical p-moment stability of the trivial solution is established, which is important for studying the impulsive control and synchronization in stochastic systems. As an application of this theory, we study the problem of chaos synchronization in the Chen system excited by parameter white-noise excitation, by using the impulsive method. Numerical simulations verify the feasibility of this method.
基金Project supported by the Natural Science Foundation of Liaoning Province,China (Grant No. 20082147)
文摘The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term coefficient of the separated configuration in state equation of the node are obtained through constructing an appropriate Lyapunov function. Each node of the complex network is a laser spatiotemporal chaos model in which the phase-conjugate wave and the unilateral coupled map lattice are taken as a local function and a spatially extended system, respectively. The simulation results show the effectiveness of the signal synchronization transmission principle of the network.
文摘In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.
基金This project was supported in part by the Science Foundation of Shanxi Province (2003F028)China Postdoctoral Science Foundation (20060390318).
文摘The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No 90405011), the Natural Science Foundation of Jiangsu Province, China (Grant No 05KJD120083) and the Natural Science Foundation of Nanjing Institute of Technology, China (Grant No KXJ06047).
文摘This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60074034 and 70271068
文摘This paper introduces the finding of some chaotic attractors in a kind of n-dimensional autonomous hybrid system, which is realized via applying some discontinuous state feedback to a kind of n linear differential system. And a constructive theorem is proposed for generalized synchronization related to the above chaotic hybrid systems. Examples are presented for illustrating the methods.
基金supported by National Natural Science Foundation of China(11271139)Guangdong Natural Science Foundation(2014A030313256,S2013040016144)+1 种基金Science and Technology Projects of Guangdong Province(2013B010101009)Tianhe Science and Technology Foundation of Guangzhou(201301YG027)
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201227)the Funding of China Scholarship Council,the Natural Science the Foundation of Anhui Province(Grant No.1208085M F93)the 211 Innovation Team of Anhui University(Grant Nos.KJTD007A and KJTD001B)
文摘As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field in modern research.By combining memristor and time⁃delay,a delayed memristive differential system with fractional order is proposed in this paper,which can generate hidden attractors.First,we discussed the dynamics of the proposed system where the parameter was set as the bifurcation parameter,and showed that with the increase of the parameter,the system generated rich chaotic phenomena such as bifurcation,chaos,and hypherchaos.Then we derived adequate and appropriate stability criteria to guarantee the system to achieve synchronization.Lastly,examples were provided to analyze and confirm the influence of parameter a,fractional order q,and time delayτon chaos synchronization.The simulation results confirm that the chaotic synchronization is affected by a,q andτ.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572080), Shanghai Rising-Star Program (Grant No.05QMX1422), and Dawn Project of the Science Foundation of Shanghai Municipal Commission of Education (Grant No.05SG41 04YQHB089)
文摘In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal with parameter uncertainty. In the second method, multi-parameter modulation is used to simultaneously transmit more than one digital message (i.e., the multichannel digital communication) through just a single signal, which switches among various chaotic attractors that differ only subtly. In theory, such a treatment increases the difficulty for the intruder to directly intercept the information, and meanwhile the implementation cost decreases significantly. In addition, numerical results show the methods are robust against weak noise, which implies their practicability.
基金Projects(61073187,61161006) supported by the National Nature Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coupled system is investigated with variations of the system parameter and coupling coefficients. Particularly, the influence of coupling strength on dynamics of the coupled system is analyzed in detail. The range of the coupling strength in which the coupled system can generate hyperchaos or realize synchronization is determined, including phase portraits, Lyapunov exponents, and Poincare section. And the critical value of the system parameter between hyperchaos and synchronization is also found with fixed coupled strength. In addition, abundant dynamical behaviors such as four-wing hyperchaotic, two-wing chaotic, single-wing coexisting attractors and periodic orbits are observed and chaos synchronization error curves are also drawn by varying system parameter c. Numerical simulations are implemented to verify the results of these investigations.
基金the National Natural Science Foundation of China (Grant No. 60074034) and the Foundation forUniversity Key Teacher by the Ministry of Education of China.
文摘The analytic criteria for the local activity theory in one-port cellularneural network (CNN) with five local state variables are presented. The application to a Hyper-chaossynchronization Chua's circuit (HCSCC) CNN with 1125 variables is studied. The bifurcation diagramsof the HCSCC CNN show that they are slightly different from the smoothed CNN with one or two portsand four state variables calculated earlier. The evolution of the patterns of the state variables ofthe HCSCC CNN is stimulated. Oscillatory patterns, chaotic patterns, convergent or divergentpatterns may emerge if the selected cell parameters are located in the locally active domains butnearby or in the edge of chaos domain.
基金Project supported by National Natural Science Foundation of China (10872165)Northwestern Polytechnical University (CX200712)
文摘The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior,called chaos,could happen even in a deterministic nonlinear system under barely deterministic disturbance.After a series of serious studies,people begin to acknowledge that chaos is a specific type of steady state motion other than the conventional periodic and quasi-periodic ones,featuring a sensitive dependence on initial conditions,resulting from the intrinsic randomness of a nonlinear system itself.In fact,chaos is a collective phenomenon consisting of massive individual chaotic responses,corresponding to different initial conditions in phase space.Any two adjacent individual chaotic responses repel each other,thus causing not only the sensitive dependence on initial conditions but also the existence of at least one positive top Lyapunov exponent(TLE) for chaos.Meanwhile,all the sample responses share one common invariant set on the Poincaré map,called chaotic attractor,which every sample response visits from time to time ergodically.So far,the existence of at least one positive TLE is a commonly acknowledged remarkable feature of chaos.We know that there are various forms of uncertainties in the real world.In theoretical studies,people often use stochastic models to describe these uncertainties,such as random variables or random processes.Systems with random variables as their parameters or with random processes as their excitations are often called stochastic systems.No doubt,chaotic phenomena also exist in stochastic systems,which we call stochastic chaos to distinguish it from deterministic chaos in the deterministic system.Stochastic chaos reflects not only the intrinsic randomness of the nonlinear system but also the external random effects of the random parameter or the random excitation.Hence,stochastic chaos is also a collective massive phenomenon,corresponding not only to different initial conditions but also to different samples of the random parameter or the random excitation.Thus,the unique common feature of deterministic chaos and stochastic chaos is that they all have at least one positive top Lyapunov exponent for their chaotic motion.For analysis of random phenomena,one used to look for the PDFs(Probability Density Functions) of the ensemble random responses.However,it is a pity that PDF information is not favorable to studying repellency of the neighboring chaotic responses nor to calculating the related TLE,so we would rather study stochastic chaos through its sample responses.Moreover,since any sample of stochastic chaos is a deterministic one,we need not supplement any additional definition on stochastic chaos,just mentioning that every sample of stochastic chaos should be deterministic chaos.We are mainly concerned with the following two basic kinds of nonlinear stochastic systems,i.e.one with random variables as its parameters and one with ergodical random processes as its excitations.To solve the stochastic chaos problems of these two kinds of systems,we first transform the original stochastic system into their equivalent deterministic ones.Namely,we can transform the former stochastic system into an equivalent deterministic system in the sense of mean square approximation with respect to the random parameter space by the orthogonal polynomial approximation,and transform the latter one simply through replacing its ergodical random excitations by their representative deterministic samples.Having transformed the original stochastic chaos problem into the deterministic chaos problem of equivalent systems,we can use all the available effective methods for further chaos analysis.In this paper,we aim to review the state of art of studying stochastic chaos with its control and synchronization by the above-mentioned strategy.