Chaotic mixing is regarded as an effective method to improve the mixing effect in the laminar stirred tank.To generate chaos in flow field in stirred tank,many efforts including aperiodic movement,asystematic installa...Chaotic mixing is regarded as an effective method to improve the mixing effect in the laminar stirred tank.To generate chaos in flow field in stirred tank,many efforts including aperiodic movement,asystematic installation impeller,etc.,were made to save mixing time and energy consumption.The computational fluid dynamics of chaotic flow field and the hyperchaotic controlling method as well as macro-instability were reviewed.Multiple flow field coupling is important in the turbulent mixing region of stirred tank.The development trends of flow field coupling and hyperchaotic controlling in chaotic mixing were prospected in energy saving operation.展开更多
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f...We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.展开更多
Flow behavior was observed in a simplified model cavity of a multiphase High Level Liquid Waste (HLLW) reprocessing glass melter. Electrodes were set to generate Joule-heating flow in the cavity. A chaotic flow occurr...Flow behavior was observed in a simplified model cavity of a multiphase High Level Liquid Waste (HLLW) reprocessing glass melter. Electrodes were set to generate Joule-heating flow in the cavity. A chaotic flow occurred because the lower part of the cavity was heated while the top surface of the cavity was cooled. Downflow and upflow occurred alternately in cavities. The shape of the cavity was a sloping bottom cavity, which was similar in shape to the real glass melter. To know the flow behavior in the cavity, 1-D flow behavior and 2-D flow behavior were measured in an experiment and simulated by an original CFD code. In the sloping bottom cavity, chaotic flow occurred in the upper part of the cavity. In the case of the sloping bottom cavity which had the same set of electrodes as the glass melter, the effect of the downflow near the electrodes decreased. The same phenomena could be predicted in the melter. The experimental results were also used to validate the CFD code, which will be helpful for developing a multiphase Joule-heating flow predicting.展开更多
Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the ...Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flows. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In the present paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental and numerical results. We produced a micromixer model of the curved channel several centimeters long with square cross section of a few millimeters side. The secondary flow was measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. We also performed three-dimensional numerical simulations for the exactly same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is achieved for the case of De ≤ 0.1Tr, and that mixing efficiency changes according to the difference in inflow conditions. The flow is studied both experimentally and numerically, and both results agree with each other very well.展开更多
Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a p...Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition.展开更多
To illustrate the general properties of the Beltrami flows,a new sufficient and necessary condi- tion of the general solution of the Beltrami flows has been given,on whose basis some sufficient and necessary condition...To illustrate the general properties of the Beltrami flows,a new sufficient and necessary condi- tion of the general solution of the Beltrami flows has been given,on whose basis some sufficient and necessary conditions and sufficient conditions in literature are unified.The advantages of the new expressions are that one may get solutions of Beltrami flows with constant proportional factors which satisfy some given asymptotic decaying conditions at infinity.Finally,we find a class of spherical vortices of Beltrami flows,where the mo- tion trajectories of the fluid particles are confined within a sphere or two adjacent concentric spherical shells.We find that the superpositions of the spherical vortices of the same order with different polar axes may produce chaotic trajectories.展开更多
The general properties of the spherical vortices(SV)of n-th order are discussedin this paper Numerical calculations are carried out in the case of n=3.We find outsome interesting phenomena concerning the chaotic regio...The general properties of the spherical vortices(SV)of n-th order are discussedin this paper Numerical calculations are carried out in the case of n=3.We find outsome interesting phenomena concerning the chaotic regions and ordered islands on the Poincare sections. Interpretations of these phenomena are also given.展开更多
基金supported by Natural Science Foundation of China(20806095)ScientificResearch Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(教外司留20091341-2)+1 种基金China Postdoctoral Science Foundation(20080430747)National High Technology Research and Development Program of China(2008AA0312)
文摘Chaotic mixing is regarded as an effective method to improve the mixing effect in the laminar stirred tank.To generate chaos in flow field in stirred tank,many efforts including aperiodic movement,asystematic installation impeller,etc.,were made to save mixing time and energy consumption.The computational fluid dynamics of chaotic flow field and the hyperchaotic controlling method as well as macro-instability were reviewed.Multiple flow field coupling is important in the turbulent mixing region of stirred tank.The development trends of flow field coupling and hyperchaotic controlling in chaotic mixing were prospected in energy saving operation.
基金Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095)the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088)
文摘We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
文摘Flow behavior was observed in a simplified model cavity of a multiphase High Level Liquid Waste (HLLW) reprocessing glass melter. Electrodes were set to generate Joule-heating flow in the cavity. A chaotic flow occurred because the lower part of the cavity was heated while the top surface of the cavity was cooled. Downflow and upflow occurred alternately in cavities. The shape of the cavity was a sloping bottom cavity, which was similar in shape to the real glass melter. To know the flow behavior in the cavity, 1-D flow behavior and 2-D flow behavior were measured in an experiment and simulated by an original CFD code. In the sloping bottom cavity, chaotic flow occurred in the upper part of the cavity. In the case of the sloping bottom cavity which had the same set of electrodes as the glass melter, the effect of the downflow near the electrodes decreased. The same phenomena could be predicted in the melter. The experimental results were also used to validate the CFD code, which will be helpful for developing a multiphase Joule-heating flow predicting.
文摘Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flows. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In the present paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental and numerical results. We produced a micromixer model of the curved channel several centimeters long with square cross section of a few millimeters side. The secondary flow was measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. We also performed three-dimensional numerical simulations for the exactly same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is achieved for the case of De ≤ 0.1Tr, and that mixing efficiency changes according to the difference in inflow conditions. The flow is studied both experimentally and numerically, and both results agree with each other very well.
文摘Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition.
基金The project is supported by the National Foundamental Research Programme of State Commission of Sciences and Technology.
文摘To illustrate the general properties of the Beltrami flows,a new sufficient and necessary condi- tion of the general solution of the Beltrami flows has been given,on whose basis some sufficient and necessary conditions and sufficient conditions in literature are unified.The advantages of the new expressions are that one may get solutions of Beltrami flows with constant proportional factors which satisfy some given asymptotic decaying conditions at infinity.Finally,we find a class of spherical vortices of Beltrami flows,where the mo- tion trajectories of the fluid particles are confined within a sphere or two adjacent concentric spherical shells.We find that the superpositions of the spherical vortices of the same order with different polar axes may produce chaotic trajectories.
文摘The general properties of the spherical vortices(SV)of n-th order are discussedin this paper Numerical calculations are carried out in the case of n=3.We find outsome interesting phenomena concerning the chaotic regions and ordered islands on the Poincare sections. Interpretations of these phenomena are also given.