由于车用锂离子动力电池系统具有高度复杂的非线性特性,很难建立准确的电路模型对荷电状态(State of Charge,SOC)进行实时在线获取。为此本文在分析并判别锂离子动力电池系统的混沌特性基础上,建立SOC时间序列的BP神经网络预测模型,并...由于车用锂离子动力电池系统具有高度复杂的非线性特性,很难建立准确的电路模型对荷电状态(State of Charge,SOC)进行实时在线获取。为此本文在分析并判别锂离子动力电池系统的混沌特性基础上,建立SOC时间序列的BP神经网络预测模型,并与二阶RC网络模型构成闭环控制系统。仿真结果表明,由二阶RC网络模型与BP神经网络模型构成的闭环控制系统具有较高的预测精度,较好的实时性及实际应用前景。展开更多
文摘由于车用锂离子动力电池系统具有高度复杂的非线性特性,很难建立准确的电路模型对荷电状态(State of Charge,SOC)进行实时在线获取。为此本文在分析并判别锂离子动力电池系统的混沌特性基础上,建立SOC时间序列的BP神经网络预测模型,并与二阶RC网络模型构成闭环控制系统。仿真结果表明,由二阶RC网络模型与BP神经网络模型构成的闭环控制系统具有较高的预测精度,较好的实时性及实际应用前景。