The hepatitis C virus(HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases includ...The hepatitis C virus(HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases:(1) binding and internalization;(2) cytoplasmic release and uncoating;(3) viral polyprotein translation and processing;(4) RNA genome replication;(5) encapsidation(packaging) and assembly; and(6) virus morphogenesis(maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.展开更多
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced...Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections,such as urinary tract infections and stroke-associated pneumonia,worsening prognosis.Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains,refolding misfolded proteins,and targeting misfolded proteins for degradation.Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones,cochaperones,and their associated pathways.This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.展开更多
Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-isch...Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release,cellular proteolysis,reactive oxygen species generation,nitric oxide synthesis,and inflammation.The molecular and cellular changes in HIE include protein misfolding,aggregation,and destruction of organelles.The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway,the extrinsic Fas receptor pathway,and the endoplasmic reticulum stress-induced pathway.Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century.Hypothermia,xenon gas treatment,the use of melatonin and erythropoietin,and hypoxic-ischemic preconditioning have proven effective in HIE patients.Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes.A large number of molecular chaperones are induced after brain ischemia and hypoxia,among which the heat shock proteins are the most important.Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects.Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations,assisting in the proper folding of newly synthesized polypeptides,regulating the degradation of misfolded proteins,inhibiting the aggregation of proteins,and by controlling the refolding of misfolded proteins.In addition,heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways,including the intrinsic pathway,the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway.Molecular chaperones play a key role in neuroprotection in HIE.In this review,we provide an overview of the mechanisms of HIE and discuss the various treatment strategies.Given their critical role in the disease,molecular chaperones are promising therapeutic targets for HIE.展开更多
Neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates that result from conformational changes in proteins. These diseases may result from an imbalance be...Neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates that result from conformational changes in proteins. These diseases may result from an imbalance between the produetion of misfolded proteins and normal chaperone capacity. Molecular chaperones provide a first line of defenee against misfolded, aggragation-prone proteins and are, therefore, promising therapeutic targets for neurodegenerative diseases.展开更多
Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the different...Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are multifunctional proteins expressed by many cell types, including those of the nervous system, known to facilitate protein quality control processes. These molecules exert pleiotropic effects and have been implicated as playing important protective roles in a variety of stress conditions, including tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review of what is currently known about the functions of extracellular chaperones in neuronal repair and regeneration and highlight future directions for this important research area. We review what is known of four constitutively secreted extracellular chaperones directly implicated in processes of neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, and propose that investigation into the effects of these and other extracellular chaperones on neuronal repair and regeneration has the potential to yield valuable new therapies.展开更多
Transcription is a highly regulated cellular process in which dysfunction leads to disease. One level of regulation is chromatin structure which protects promoters from transcription factor binding. To circumvent this...Transcription is a highly regulated cellular process in which dysfunction leads to disease. One level of regulation is chromatin structure which protects promoters from transcription factor binding. To circumvent this blockade, histone chaperones aid in displacement of nucleosomes. In particular, the histone chaperone complex HUCA, consisting of Hira, Ubn1, Cabin1, and ASF1a, replaces histone variant H3.1 with H3.3 in front of actively transcribing RNA Polymerase II (RNAPII). The 26S proteasome is a major degrader of proteins within the cell and plays both proteolytic and non- proteolytic roles in transcriptional regulation. One major role is the degradation of irreversibly arrested RNAPII. Several interactions between HUCA, the 26S proteasome, and RNAPII have been characterized individually;we now present observations from our lab and others which directly associate elongating RNAPII with the degradation machinery through observations of involvement with the HUCA complex. Our short report presents these ideas and discusses their importance in transcriptional regulation as well as implications in disease manifestation.展开更多
Pseudoalteromonas sp. SM9913 is a phychrotmphic bacterium isolated from the deep-sea sediment. The genes encoding chaperones DnaJ and DnaK of P. sp. SM9913 were cloned by normal PCR and TAIL - PCR (GenBank accession ...Pseudoalteromonas sp. SM9913 is a phychrotmphic bacterium isolated from the deep-sea sediment. The genes encoding chaperones DnaJ and DnaK of P. sp. SM9913 were cloned by normal PCR and TAIL - PCR (GenBank accession Nos DQ640312, DQ504163 ). The chaperones DnaJ and DnaK from the strain SM9913 contain such conserved domains as those of many other bacteria, and show some cold-adapted characteristics in their structures when compared with those from psychro-, meso-and themophilic bacteria. It is indicated that chaperones DnaJ and DnaK of P. sp. SM9913 may be adapted to low temperature in deep-sea and function well in assisting folding, assembling and translocation of proteins at low temperature. This research lays a foundation for the further study on the cold-adapted mechanism of chaperones DnaJ and DnaK of cold-adapted microorganisms.展开更多
Objective Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type Ⅲ secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cel...Objective Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type Ⅲ secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cell's functions. Specialized bacterial chaperones are required for effective secretion of some effectors. To identify the chaperone of ExoS, the representative effector secreted by the TTSS of P aeruginosa, we analyzed the role of a postulated chaperone termed Orfl. Methods By allelic exchange, we constructed the mutant with the deletion of gene Orfl. Analysis of secreted and cell-associated fractions was performed by SDS-PAGE and Western blotting. Using strain expressing in trans Orfl, tagged by V5 polypeptide and histidine, protein-protein interaction was determined by affinity resin pull-down assay in combination with MALDI-TOF The role of Orfl in the expression of exoS was evaluated by gene reporter analysis. Results Pull-down assay showed that Orfl binds to ExoS and ExoT. Secretion profile analysis showed that Orfl was necessary for the optimal secretion of ExoS and ExoT. However, Orfl had no effect on the expression of exoS. Conclusion Orfl is important for the secretion of ExoS probably by maintaining ExoS in a secretion-competent conformation. We propose to name Orfl as SpcS for "specific Pseudomonas chaperone for ExoS".展开更多
Parkinson's disease(PD) is a common neurodegenerative disorder whose primary pathology features are the degeneration of dopaminergic neurons in the substantia nigra pars compacta(SNc) and the presence of eosinoph...Parkinson's disease(PD) is a common neurodegenerative disorder whose primary pathology features are the degeneration of dopaminergic neurons in the substantia nigra pars compacta(SNc) and the presence of eosinophilic inclusions called Lewy body in the cytoplasm of the remained neurons. Growing evidence suggests that dysfunction of the ubiquitin-proteasome system(UPS) is involved in the etiopathogenesis of PD. In order to investigate the pathogenetic mechanism of ubiquitin-proteasome dysfunction in PD, 2D-differential gel electrophoresis(2D-DIGE) and MALDI-TOF Pro MS were used to determine the proteins, which were differentially expressed, in PC12 cells that had undergone a synthetic proteasomal inhibitor PSI(10 μmol/L) treatment for 24 h. Forty-six protein spots were differentially expressed in response to PSI administration, of which 34 were increased and 12 decreased. Six of these were identified as molecular charperones: endoplasmin precursor(GRP94), heat shock protein 105(HSP105), HSC-70-psl, glucose ruglated protein 75(GRP75), glucose ruglated protein 58(GRP58) and heat shock 27000 protein l(HSP27). The results suggest that the molecular chaperones play an important role in the PD model induced by proteasomal inhibitor.展开更多
Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to prote...Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation,cell division,and migration.HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy.In line with this function,the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation.In cancer,HSPB8 has a dual role being capable of exerting either a pro-or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation.Moreover,HSPB8 exerts a protective function in different diseases by modulating the inflammatory response,which characterizes not only neurodegenerative diseases,but also other chronic or acute conditions affecting the nervous system,such as multiple sclerosis and intracerebellar hemorrhage.Of note,HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases.This is the case of cognitive impairment related to diabetes mellitus,in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis.This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions,focusing on the beneficial effects of its modulation.Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed,emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.展开更多
PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different patho...PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.展开更多
Chromatin structure governs a number of cellular processes including DNA replication,transcription,and DNA repair.During DNA replication,chromatin structure including the basic repeating unit of chromatin,the nucleoso...Chromatin structure governs a number of cellular processes including DNA replication,transcription,and DNA repair.During DNA replication,chromatin structure including the basic repeating unit of chromatin,the nucleosome,is temporarily disrupted,and then reformed immediately after the passage of the replication fork.This coordinated process of nucleosome assembly during DNA replication is termed replication—coupled nucleosome assembly.Disruption of this process can lead to genome instability,a hallmark of cancer cells.Therefore,addressing how replication-coupled nucleosome assembly is regulated has been of great interest.Here,we review the current status of this growing field of interest,highlighting recent advances in understanding the regulation of this important process by the dynamic interplay of histone chaperones and histone modifications.展开更多
Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing ...Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state. Pre- proteins can associate with HSP70, HSP90, and 14-3-3 proteins in the cytosol. In this study, we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding. Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70. We were able to identify a diverse and extensive class of preproteins as HSP90 substrates, thus providing a tool for the investigation of HSP90 client protein association. The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins, in HSP90 binding. We identified two partner components of the HSP90 cycle, which were present in the preprotein containing high-molecular-weight complexes, the HSP70/HSP90 organizing protein HOP, as well as the immunophilin FKBP73. The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.展开更多
Molecular chaperones are a family of proteins that were first noticed to exist about 45 years ago from their increased transcription under heat shock conditions.As a result,the regulation of their encoding genes has b...Molecular chaperones are a family of proteins that were first noticed to exist about 45 years ago from their increased transcription under heat shock conditions.As a result,the regulation of their encoding genes has been subject to extensive studies.Recent studies revealed that the biological activities of molecular chaperones can also be effectively modulated at the protein level.The ways of modulation so far elucidated include allosteric effect,covalent modification,protein-protein interaction,and con-formational alteration induced by such macro-environmental conditions as temperature and pH.These latter aspects were reviewed here.Emphasized here is the importance of such immediate structural alterations that lead to an immediate activity increase,providing the immediate protection needed for the cells to survive the stress conditions.展开更多
RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging a...RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging and slow. Therefore, cells and viruses encode a variety of RNA remodeling proteins, including helicases and RNA chaperones. In RNA viruses, these proteins are believed to play pivotal roles in all the processes involving viral RNAs during the life cycle. RNA helicases have been studied extensively for decades, whereas RNA chaperones, particularly virus-encoded RNA chaperones, are often overlooked. This review describes the activities of RNA chaperones encoded by RNA viruses, particularly the ones identified and characterized in recent years, and the functions of these proteins in different steps of viral life cycles, and presents an overview of this unique group of proteins.展开更多
Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis...Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis, and cell survival. These roles offer significant insight for understanding homeostasis of normal physiologic processes, and the pathophysiologic consequences of disruption of normal function. Because of the broad nature of chaperone action, S1R agonists and antagonists represent potential drug discovery goals for the pharmacotherapeutic treatment of a variety of disorders that result from dysfunctional proteins. The present study summarizes the S1R as a pharmacologic chaperone crucial for protein folding and cellular homeostasis. Through literature review and thermodynamic analysis, it explores how S1R stabilizes target proteins, influencing neuroprotection and potential drug therapies. The binding of chaperones to target proteins is thermodynamically favorable, offering insights into treating diseases linked to protein misfolding.展开更多
Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods...Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods Two-vesseloccluded transient global ischemia rat model was used. The rats were divided into sublethal 3-min ischemia group, lethal 10- min ischemia group and ischemic preconditioning group. Neuronal death in the CA1 region was observed by hematoxylineosin staining, and number of live neurons was assessed by cell counting under a light microscope. Immunochemistry and laser scanning confocal microscopy were used to observe the distribution of chaperone hsp70 in the CA1 neurons. Differential centrifuge was used to isolate cytosol, nucleus and protein aggregates fractions. Western blot was used to analyze the quantitative alterations of protein aggregates and inducible chaperone hsp70 in cellular fractions and in protein aggregates under different ischemic conditions. Results Histological examination showed that ischemic preconditioning significantly reduced delayed neuronal death in the hippocampus CA1 region (P 〈 0.01 vs 10-min ischemia group). Sublethal ischemic preconditioning induced chaperone hsp70 expression in the CA1 neurons after 24 h reperfusion following 10-min ischemia. Induced-hsp70 combined with the abnormal proteins produced during the secondary lethal 10-min ischemia and inhibited the formation of cytotoxic protein aggregates(P〈0.01 vs 10-min ischemia group).Conelusion Ischemic preconditioning induced chaperone hsp70 expression and inhibited protein aggregates formation in the CA1 neurons when suffered secondary lethal ischemia, which may protect neurons from death.展开更多
Alcoholic liver disease (ALD) is a leading cause of liver disease and liver-related deaths globally, particularly in developed nations. Liver fibrosis is a consequence of ALD and other chronic liver insults, which c...Alcoholic liver disease (ALD) is a leading cause of liver disease and liver-related deaths globally, particularly in developed nations. Liver fibrosis is a consequence of ALD and other chronic liver insults, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Liver fibrosis is characterized by accumulation of excess extracellular matrix components, including type I collagen, which disrupts liver microcirculation and leads to injury. To date, there is no therapy for the treatment of liver fibrosis; thus treatments that either prevent the accumulation of type I collagen or hasten its degradation are desirable. The focus of this review is to examine the regulation of type I collagen in fibrogenic cells of the liver and to discuss current advances in therapeutics to eliminate excessive collagen deposition.展开更多
文摘The hepatitis C virus(HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases:(1) binding and internalization;(2) cytoplasmic release and uncoating;(3) viral polyprotein translation and processing;(4) RNA genome replication;(5) encapsidation(packaging) and assembly; and(6) virus morphogenesis(maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
基金the National Natural Science Foundation of China,Nos.82172147(to YL),81571880(to YL),81373147(to YL),30901555(to JZ),30972870(to YL)the Natural Science Foundation of Hunan Province,Nos.2021JJ30900,2016JJ2157(both to YL)。
文摘Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections,such as urinary tract infections and stroke-associated pneumonia,worsening prognosis.Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains,refolding misfolded proteins,and targeting misfolded proteins for degradation.Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones,cochaperones,and their associated pathways.This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
文摘Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release,cellular proteolysis,reactive oxygen species generation,nitric oxide synthesis,and inflammation.The molecular and cellular changes in HIE include protein misfolding,aggregation,and destruction of organelles.The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway,the extrinsic Fas receptor pathway,and the endoplasmic reticulum stress-induced pathway.Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century.Hypothermia,xenon gas treatment,the use of melatonin and erythropoietin,and hypoxic-ischemic preconditioning have proven effective in HIE patients.Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes.A large number of molecular chaperones are induced after brain ischemia and hypoxia,among which the heat shock proteins are the most important.Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects.Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations,assisting in the proper folding of newly synthesized polypeptides,regulating the degradation of misfolded proteins,inhibiting the aggregation of proteins,and by controlling the refolding of misfolded proteins.In addition,heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways,including the intrinsic pathway,the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway.Molecular chaperones play a key role in neuroprotection in HIE.In this review,we provide an overview of the mechanisms of HIE and discuss the various treatment strategies.Given their critical role in the disease,molecular chaperones are promising therapeutic targets for HIE.
文摘Neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates that result from conformational changes in proteins. These diseases may result from an imbalance between the produetion of misfolded proteins and normal chaperone capacity. Molecular chaperones provide a first line of defenee against misfolded, aggragation-prone proteins and are, therefore, promising therapeutic targets for neurodegenerative diseases.
文摘Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are multifunctional proteins expressed by many cell types, including those of the nervous system, known to facilitate protein quality control processes. These molecules exert pleiotropic effects and have been implicated as playing important protective roles in a variety of stress conditions, including tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review of what is currently known about the functions of extracellular chaperones in neuronal repair and regeneration and highlight future directions for this important research area. We review what is known of four constitutively secreted extracellular chaperones directly implicated in processes of neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, and propose that investigation into the effects of these and other extracellular chaperones on neuronal repair and regeneration has the potential to yield valuable new therapies.
文摘Transcription is a highly regulated cellular process in which dysfunction leads to disease. One level of regulation is chromatin structure which protects promoters from transcription factor binding. To circumvent this blockade, histone chaperones aid in displacement of nucleosomes. In particular, the histone chaperone complex HUCA, consisting of Hira, Ubn1, Cabin1, and ASF1a, replaces histone variant H3.1 with H3.3 in front of actively transcribing RNA Polymerase II (RNAPII). The 26S proteasome is a major degrader of proteins within the cell and plays both proteolytic and non- proteolytic roles in transcriptional regulation. One major role is the degradation of irreversibly arrested RNAPII. Several interactions between HUCA, the 26S proteasome, and RNAPII have been characterized individually;we now present observations from our lab and others which directly associate elongating RNAPII with the degradation machinery through observations of involvement with the HUCA complex. Our short report presents these ideas and discusses their importance in transcriptional regulation as well as implications in disease manifestation.
基金The work was supported by the Hi-Tech Research and Development Program of China under contract Nos 2006AA09Z414 and 2007AA091903;the China Ocean Mineral Resources R & D Association under contract No. DYXM - 115 - 02 - 2 - 6;the National Natural Science Foundation of China under contract No. Z2004D02;the Natural Science Foundation of Shandong Province of China under contract No. Z2004D02;the Foundation for Young Excellent Scientists in Shandong Province of China under contract No. 2006BS02002;the Program for New Century Excellent Talents in University under contract No. NCET - 06 - 0578.
文摘Pseudoalteromonas sp. SM9913 is a phychrotmphic bacterium isolated from the deep-sea sediment. The genes encoding chaperones DnaJ and DnaK of P. sp. SM9913 were cloned by normal PCR and TAIL - PCR (GenBank accession Nos DQ640312, DQ504163 ). The chaperones DnaJ and DnaK from the strain SM9913 contain such conserved domains as those of many other bacteria, and show some cold-adapted characteristics in their structures when compared with those from psychro-, meso-and themophilic bacteria. It is indicated that chaperones DnaJ and DnaK of P. sp. SM9913 may be adapted to low temperature in deep-sea and function well in assisting folding, assembling and translocation of proteins at low temperature. This research lays a foundation for the further study on the cold-adapted mechanism of chaperones DnaJ and DnaK of cold-adapted microorganisms.
基金This research was supported by the association "Vaincre la Mucoviscidose" of France
文摘Objective Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type Ⅲ secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cell's functions. Specialized bacterial chaperones are required for effective secretion of some effectors. To identify the chaperone of ExoS, the representative effector secreted by the TTSS of P aeruginosa, we analyzed the role of a postulated chaperone termed Orfl. Methods By allelic exchange, we constructed the mutant with the deletion of gene Orfl. Analysis of secreted and cell-associated fractions was performed by SDS-PAGE and Western blotting. Using strain expressing in trans Orfl, tagged by V5 polypeptide and histidine, protein-protein interaction was determined by affinity resin pull-down assay in combination with MALDI-TOF The role of Orfl in the expression of exoS was evaluated by gene reporter analysis. Results Pull-down assay showed that Orfl binds to ExoS and ExoT. Secretion profile analysis showed that Orfl was necessary for the optimal secretion of ExoS and ExoT. However, Orfl had no effect on the expression of exoS. Conclusion Orfl is important for the secretion of ExoS probably by maintaining ExoS in a secretion-competent conformation. We propose to name Orfl as SpcS for "specific Pseudomonas chaperone for ExoS".
文摘Parkinson's disease(PD) is a common neurodegenerative disorder whose primary pathology features are the degeneration of dopaminergic neurons in the substantia nigra pars compacta(SNc) and the presence of eosinophilic inclusions called Lewy body in the cytoplasm of the remained neurons. Growing evidence suggests that dysfunction of the ubiquitin-proteasome system(UPS) is involved in the etiopathogenesis of PD. In order to investigate the pathogenetic mechanism of ubiquitin-proteasome dysfunction in PD, 2D-differential gel electrophoresis(2D-DIGE) and MALDI-TOF Pro MS were used to determine the proteins, which were differentially expressed, in PC12 cells that had undergone a synthetic proteasomal inhibitor PSI(10 μmol/L) treatment for 24 h. Forty-six protein spots were differentially expressed in response to PSI administration, of which 34 were increased and 12 decreased. Six of these were identified as molecular charperones: endoplasmin precursor(GRP94), heat shock protein 105(HSP105), HSC-70-psl, glucose ruglated protein 75(GRP75), glucose ruglated protein 58(GRP58) and heat shock 27000 protein l(HSP27). The results suggest that the molecular chaperones play an important role in the PD model induced by proteasomal inhibitor.
基金supported by:Fondazione Telethon-Italy(No.GGP19128 to AP)Fondazione Cariplo-Italy(No.2021-1544 to RC)+14 种基金Fondazione Italiana di Ricerca per la Sclerosi Laterale Amiotrofica(AriSLA)-Italy(No.MLOpathy to APTarget-RAN to AP)Association Française contre les Myopathies-France(AFM Telethon No.23236 to AP)Kennedy’s Disease Association-USA(2018 grant to RC2020 grant to MG)Ministero dell’Universitàe della Ricerca(MIUR)-Italy(PRIN-Progetti di ricerca di interesse nazionale(No.2017F2A2C5 to APNo.2022EFLFL8 to APNo.2020PBS5MJ to VCNo.2022KSJZF5 to VC)PRIN-Progetti di ricerca di interesse nazionale-bando 2022,PNRR finanziato dall’Unione europea-Next Generation EU,componente M4C2,investimento 1.1(No.P2022B5J32 to RC and No.P20225R4Y5 to VC)CN3:RNA-Codice Proposta:CN_00000041Tematica Sviluppo di terapia genica e farmaci con tecnologia a RNA(Centro Nazionale di Ricerca-CN3 National Center for Gene Therapy and Drugs based on RNA Technology to AP)Progetto Dipartimenti di Eccellenza(to DiSFeB)Ministero della Salute,Agenzia Italiana del Farmaco(AIFA)-Italy(Co_ALS to AP)Universitàdegli Studi di Milano(piano di sviluppo della ricerca(PSR)UNIMI-linea B(to RC and BT).
文摘Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation,cell division,and migration.HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy.In line with this function,the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation.In cancer,HSPB8 has a dual role being capable of exerting either a pro-or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation.Moreover,HSPB8 exerts a protective function in different diseases by modulating the inflammatory response,which characterizes not only neurodegenerative diseases,but also other chronic or acute conditions affecting the nervous system,such as multiple sclerosis and intracerebellar hemorrhage.Of note,HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases.This is the case of cognitive impairment related to diabetes mellitus,in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis.This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions,focusing on the beneficial effects of its modulation.Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed,emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.
基金supported by Telethon Italy award GGP15225(to RC and GM)Italian Ministry of Health award RF-2016-02362950(to RC and CZ)+1 种基金the CJD Foundation USA(to RC)the Associazione Italiana Encefalopatie da Prioni(AIEnP)(to RC).
文摘PrPSc,a misfolded,aggregation-prone isoform of the cellular prion protein(PrPC),is the infectious prion agent responsible for fatal neurodegenerative diseases of humans and other mammals.PrPSccan adopt different pathogenic conformations(prion strains),which can be resistant to potential drugs,or acquire drug resistance,posing challenges for the development of effective therapies.Since PrPCis the obligate precursor of any prion strain and serves as the mediator of prion neurotoxicity,it represents an attractive therapeutic target fo r prion diseases.In this minireview,we briefly outline the approaches to target PrPCand discuss our recent identification of Zn(Ⅱ)-Bn PyP,a PrPC-targeting porphyrin with an unprecedented bimodal mechanism of action.We argue that in-depth understanding of the molecular mechanism by which Zn(Ⅱ)-Bn PyP targets PrPCmay lead toward the development of a new class of dual mechanism anti-prion compounds.
基金supported by grants from the National Institutes of Health.
文摘Chromatin structure governs a number of cellular processes including DNA replication,transcription,and DNA repair.During DNA replication,chromatin structure including the basic repeating unit of chromatin,the nucleosome,is temporarily disrupted,and then reformed immediately after the passage of the replication fork.This coordinated process of nucleosome assembly during DNA replication is termed replication—coupled nucleosome assembly.Disruption of this process can lead to genome instability,a hallmark of cancer cells.Therefore,addressing how replication-coupled nucleosome assembly is regulated has been of great interest.Here,we review the current status of this growing field of interest,highlighting recent advances in understanding the regulation of this important process by the dynamic interplay of histone chaperones and histone modifications.
文摘Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state. Pre- proteins can associate with HSP70, HSP90, and 14-3-3 proteins in the cytosol. In this study, we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding. Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70. We were able to identify a diverse and extensive class of preproteins as HSP90 substrates, thus providing a tool for the investigation of HSP90 client protein association. The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins, in HSP90 binding. We identified two partner components of the HSP90 cycle, which were present in the preprotein containing high-molecular-weight complexes, the HSP70/HSP90 organizing protein HOP, as well as the immunophilin FKBP73. The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.
基金Supported by National Natural Science Foundation of China(Grant Nos. 30570355 and 30670022)National Key Basic Research Foundation of China (Grant Nos. 2006CB806508 and 2006CB910300)
文摘Molecular chaperones are a family of proteins that were first noticed to exist about 45 years ago from their increased transcription under heat shock conditions.As a result,the regulation of their encoding genes has been subject to extensive studies.Recent studies revealed that the biological activities of molecular chaperones can also be effectively modulated at the protein level.The ways of modulation so far elucidated include allosteric effect,covalent modification,protein-protein interaction,and con-formational alteration induced by such macro-environmental conditions as temperature and pH.These latter aspects were reviewed here.Emphasized here is the importance of such immediate structural alterations that lead to an immediate activity increase,providing the immediate protection needed for the cells to survive the stress conditions.
基金supported by the National Basic Research Program of China (973 Program, 2014CB542603 to XZ)the National High-tech R&D Program of China (863 Program, 2015AA020939 to XZ)+2 种基金the National Natural Science Foundation of China grants No. 31400141 (to JY) and No. 31270190 (to XZ)the Natural Science Foundation of Hubei grant No. 2015CFB351 (to JY)the National Science Foundation for Post-doctoral Scientists of China grant No. 2015M572190 (to JY)
文摘RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging and slow. Therefore, cells and viruses encode a variety of RNA remodeling proteins, including helicases and RNA chaperones. In RNA viruses, these proteins are believed to play pivotal roles in all the processes involving viral RNAs during the life cycle. RNA helicases have been studied extensively for decades, whereas RNA chaperones, particularly virus-encoded RNA chaperones, are often overlooked. This review describes the activities of RNA chaperones encoded by RNA viruses, particularly the ones identified and characterized in recent years, and the functions of these proteins in different steps of viral life cycles, and presents an overview of this unique group of proteins.
文摘Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis, and cell survival. These roles offer significant insight for understanding homeostasis of normal physiologic processes, and the pathophysiologic consequences of disruption of normal function. Because of the broad nature of chaperone action, S1R agonists and antagonists represent potential drug discovery goals for the pharmacotherapeutic treatment of a variety of disorders that result from dysfunctional proteins. The present study summarizes the S1R as a pharmacologic chaperone crucial for protein folding and cellular homeostasis. Through literature review and thermodynamic analysis, it explores how S1R stabilizes target proteins, influencing neuroprotection and potential drug therapies. The binding of chaperones to target proteins is thermodynamically favorable, offering insights into treating diseases linked to protein misfolding.
基金the grants from the Department of Science and Technology of Jilin Province, China (No. 20070721)the Bureau of Science and Technology of Changchun, Jilin Province, China (No. 2007129).
文摘Objective To investigate the effect of ischemic preconditioning on chaperone hsp70 expression and protein aggregation in the CA1 neurons of rats, and to further explore its potential neuroprotective mechanism. Methods Two-vesseloccluded transient global ischemia rat model was used. The rats were divided into sublethal 3-min ischemia group, lethal 10- min ischemia group and ischemic preconditioning group. Neuronal death in the CA1 region was observed by hematoxylineosin staining, and number of live neurons was assessed by cell counting under a light microscope. Immunochemistry and laser scanning confocal microscopy were used to observe the distribution of chaperone hsp70 in the CA1 neurons. Differential centrifuge was used to isolate cytosol, nucleus and protein aggregates fractions. Western blot was used to analyze the quantitative alterations of protein aggregates and inducible chaperone hsp70 in cellular fractions and in protein aggregates under different ischemic conditions. Results Histological examination showed that ischemic preconditioning significantly reduced delayed neuronal death in the hippocampus CA1 region (P 〈 0.01 vs 10-min ischemia group). Sublethal ischemic preconditioning induced chaperone hsp70 expression in the CA1 neurons after 24 h reperfusion following 10-min ischemia. Induced-hsp70 combined with the abnormal proteins produced during the secondary lethal 10-min ischemia and inhibited the formation of cytotoxic protein aggregates(P〈0.01 vs 10-min ischemia group).Conelusion Ischemic preconditioning induced chaperone hsp70 expression and inhibited protein aggregates formation in the CA1 neurons when suffered secondary lethal ischemia, which may protect neurons from death.
文摘Alcoholic liver disease (ALD) is a leading cause of liver disease and liver-related deaths globally, particularly in developed nations. Liver fibrosis is a consequence of ALD and other chronic liver insults, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Liver fibrosis is characterized by accumulation of excess extracellular matrix components, including type I collagen, which disrupts liver microcirculation and leads to injury. To date, there is no therapy for the treatment of liver fibrosis; thus treatments that either prevent the accumulation of type I collagen or hasten its degradation are desirable. The focus of this review is to examine the regulation of type I collagen in fibrogenic cells of the liver and to discuss current advances in therapeutics to eliminate excessive collagen deposition.