We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and s...We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and spectrum of output light,and optimizing the length of gratings,in order to reduce the mode competition effect in the device,and obtain the high power output light wave with good longitudinal mode characteristics.展开更多
We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic fi...We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques axe kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.展开更多
As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed...As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.展开更多
In order to effectively utilize the dielectric response characteristics of transformers to diagnose the insulation state,this paper proposes a two-level hybrid optimization method for analyzing time-domain dielectric ...In order to effectively utilize the dielectric response characteristics of transformers to diagnose the insulation state,this paper proposes a two-level hybrid optimization method for analyzing time-domain dielectric response characteristics.The optimization algorithm is based on the combined statistical indicators(CSI)and random forest(RF)theory.The initial feature space set is formed with 23 time-domain characteristics.In the first-level stage,statistical indices correlation,distance,and information indicators are integrated to assess the synthesis score of the characteristics,while highly redundant and lowclass discrimination characteristics are eliminated from the initial space set.In the second-level stage,the Random Forest based outside bagging data theory is introduced to evaluate the least important characteristics,and the characteristics with low importance indices are excluded to obtain the final optimal feature space set.The proposed method is carried out on 82 sets of data from actual dielectric response tests on oil-paper insulation transformers.Finally,the final optimal feature space set,along with several other data sets,is tested via different diagnosis methods.The results show that the optimal feature space set obtained via the proposed method outperforms other feature space sets in terms of better adaptability and diagnosis accuracy.展开更多
Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail th...Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail the fabrication of conductive domain walls in x-cut congruent thin-film lithium niobate(TFLN)using an electrical-field poling technique.The ferroelectric domain structures can be controlled through the applied electrical field and applied pulse numbers,and the domain inversion process is related to the conduction characteristics of the domain walls.The domain structures in TFLN are revealed using confocal second-harmonic microscopy and piezoresponse force microscopy.The results provide further directions for the development and application of conductive domain walls in TFLN.展开更多
Acoustic Barkhausen Emission (ABE) and Electromagnetic Barkhausen Emission (EBE) have been measured. Explanations of the response of nickel to an applied magnetic field are considered using energy density diagrams and...Acoustic Barkhausen Emission (ABE) and Electromagnetic Barkhausen Emission (EBE) have been measured. Explanations of the response of nickel to an applied magnetic field are considered using energy density diagrams and critical fields deduced using Kersten's modified theory. These theoretical models are correlated with ABE and EBE measurements, providing further confirmation of the origins of ABE being non-180° domain wall motion. This paper also shows that the motion of domain walls, on increasing the magnetising fields from saturation to satu -ration, follows the sequence of 71°-180° - 109°. Values of critical fields correponding to 71°, 180° and 109° wall motions in nickel are determined using these techniques .展开更多
Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simu...Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.展开更多
文摘We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and spectrum of output light,and optimizing the length of gratings,in order to reduce the mode competition effect in the device,and obtain the high power output light wave with good longitudinal mode characteristics.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474183,51371105 and 51177088the Korea Research Foundation(NRF) under Grant No 2010-0021735+1 种基金the Leading Foreign Research Institute Recruitment Program of Korea under Grant No 2010-00471the Science and Technology Department of Hubei Province under Grant No 2014BEC060
文摘We investigate the dynamic behavior of the magnetic domain wall under perpendicular magnetic field pulses in fiat ferromagnetic nanowires using micromagnetic simulations. It is found that the perpendicular magnetic field pulse can trigger the magnetic domain wall motion, where all the field torques axe kept on the plane of nanowire strip. The speed of magnetic domain walls faster than several hundreds of meters per second is predicted without the Walker breakdown for the perpendicular magnetic driving field stronger than 200mT. Interestingly, the dynamic behavior of the moving magnetic domain wall driven by perpendicular magnetic field pulses is explained by charging- and discharging-like behaviors of an electrical RC-circuit model, where the charging and the discharging of magnetic charges on the nanowire planes are considered. The concept of the RC-model-like dynamic characteristic of the magnetic domain wall might be promising for the applications in spintronic functional devices based on the magnetic domain wall motion.
基金Supported by the National Key Basic Research Program of China(No.2014CB046405)
文摘As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.
基金supported by The National Natural Science Foundation of China(61174117)the Foundation of Scientific Research Project of Jinjiang Science and Education Development Center of Fuzhou Univerdity(2019-JJFDKY-33).
文摘In order to effectively utilize the dielectric response characteristics of transformers to diagnose the insulation state,this paper proposes a two-level hybrid optimization method for analyzing time-domain dielectric response characteristics.The optimization algorithm is based on the combined statistical indicators(CSI)and random forest(RF)theory.The initial feature space set is formed with 23 time-domain characteristics.In the first-level stage,statistical indices correlation,distance,and information indicators are integrated to assess the synthesis score of the characteristics,while highly redundant and lowclass discrimination characteristics are eliminated from the initial space set.In the second-level stage,the Random Forest based outside bagging data theory is introduced to evaluate the least important characteristics,and the characteristics with low importance indices are excluded to obtain the final optimal feature space set.The proposed method is carried out on 82 sets of data from actual dielectric response tests on oil-paper insulation transformers.Finally,the final optimal feature space set,along with several other data sets,is tested via different diagnosis methods.The results show that the optimal feature space set obtained via the proposed method outperforms other feature space sets in terms of better adaptability and diagnosis accuracy.
文摘Conductive ferroelectric domain walls have attracted increasing research interest in the field of nanoelectronics,and the fabrication technique for such domain walls is vital.In this study,we investigated in detail the fabrication of conductive domain walls in x-cut congruent thin-film lithium niobate(TFLN)using an electrical-field poling technique.The ferroelectric domain structures can be controlled through the applied electrical field and applied pulse numbers,and the domain inversion process is related to the conduction characteristics of the domain walls.The domain structures in TFLN are revealed using confocal second-harmonic microscopy and piezoresponse force microscopy.The results provide further directions for the development and application of conductive domain walls in TFLN.
文摘Acoustic Barkhausen Emission (ABE) and Electromagnetic Barkhausen Emission (EBE) have been measured. Explanations of the response of nickel to an applied magnetic field are considered using energy density diagrams and critical fields deduced using Kersten's modified theory. These theoretical models are correlated with ABE and EBE measurements, providing further confirmation of the origins of ABE being non-180° domain wall motion. This paper also shows that the motion of domain walls, on increasing the magnetising fields from saturation to satu -ration, follows the sequence of 71°-180° - 109°. Values of critical fields correponding to 71°, 180° and 109° wall motions in nickel are determined using these techniques .
基金The authors gratefully acknowledge the supports from China Postdoctoral Science Foundation (Grant No. 2014M550327), the opening foundation of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and the National Natural Science Foundation of China (Grant No. 11372275). The authors are also grateful to Chengbo Yu and Liang Yu for their introduction of the choanoid fluidized bed bioreactor and helpful discussions.
文摘Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.