CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy image...CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence(PL) intensity of Cd Te/Cd S QD films on Si nanowire substrates with Au NPs is significantly increased,which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to4.7 ns after introducing Au NPs into Si NWs.展开更多
Two kinds of Nb-doped silica fibers, an NbCl5-doped fiber and an Nb205-doped fiber, are fabricated and char- acterized in this Letter. First, the refractive index profiles of both fibers are obtained, and then their R...Two kinds of Nb-doped silica fibers, an NbCl5-doped fiber and an Nb205-doped fiber, are fabricated and char- acterized in this Letter. First, the refractive index profiles of both fibers are obtained, and then their Raman spectra are measured with 785 nm exciting light. The Nb-doped fibers' Raman spectra are compared with a conventional GeO2-doped single-mode silica fiber that is prepared with the same method and under the same conditions. As a result, the Raman gain coefficients of the Nb-doped silica fiber core are obtained. The exper- imental results show that Nb2O5 doping can enhance the Raman scattering intensity of the optical fibers.展开更多
基金Supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province,Qing Lan Project of Yangzhou Polytechnic Institute,the Natural Science Foundation of Yangzhou City under Grant No YZ2016123the National Natural Science Foundation of China under Grant No 61376004
文摘CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence(PL) intensity of Cd Te/Cd S QD films on Si nanowire substrates with Au NPs is significantly increased,which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to4.7 ns after introducing Au NPs into Si NWs.
基金supported by the National Natural Science Foundation of China(Nos.61027015,61177088,61475095,and 61575120)the National"973"Programof China(No.2012CB723405)the Key Laboratory of Specialty Fiber Optics and Optical Access Networks(Nos.SKLSFO2012-01,SKLSFO2013-02,and SKLSFO2015-01)
文摘Two kinds of Nb-doped silica fibers, an NbCl5-doped fiber and an Nb205-doped fiber, are fabricated and char- acterized in this Letter. First, the refractive index profiles of both fibers are obtained, and then their Raman spectra are measured with 785 nm exciting light. The Nb-doped fibers' Raman spectra are compared with a conventional GeO2-doped single-mode silica fiber that is prepared with the same method and under the same conditions. As a result, the Raman gain coefficients of the Nb-doped silica fiber core are obtained. The exper- imental results show that Nb2O5 doping can enhance the Raman scattering intensity of the optical fibers.