Widespread aeolian sediments have been found in the middle reaches of the Yarlung Zangbo River, China, The grain-size characteristics of sediments from Cha'er Section in the area were analyzed. The results show that ...Widespread aeolian sediments have been found in the middle reaches of the Yarlung Zangbo River, China, The grain-size characteristics of sediments from Cha'er Section in the area were analyzed. The results show that the section include one stratum of paleo-mobile dunes, four strata of paleo-semi-fixed dunes, two strata of paleo-fixed dunes, one stratum of sandy immature soils. The paleo-mobile and paleo-semi-fixed dune sand in this section are similar to modem aeolian sand in either grain-size composition or Mz and c distribution. Compared the above types of dunes each other, the content of sand substance decreases, while the content of silt and clay increases for paleo-fixed dunes and sandy immature soils. Combined with age data for each stratum, the analysis shows that these strata are the products of climate changes and the evolution of aeolian landforms. The evolutionary sequence of the paleoclimate and of aeolian activities in the valley since 8600 yr B.P. reveals four stages: 8600-5700 yr B.P., when the paleoclimate was cold and dry, with strong winds, thereby activating dunes; 5700-3600 yr B.P., when it was warm and wet, with weak winds, causing dunes to undergo soil-forming processes; 3600-1900 yr B.P., when climate shifted from cold-dry with strong winds to warm-wet with weak winds, and activated dunes were fixed again; and 1900 yr B.P. -present, when the climate became fine, with weak winds, fixing dunes again.展开更多
The Kumtag Desert is located in the arid northwestern portion of China,and is considered China’s sixth-largest desert.Grain-size analysis of the sand plays a very important role in differentiating sedimentary environ...The Kumtag Desert is located in the arid northwestern portion of China,and is considered China’s sixth-largest desert.Grain-size analysis of the sand plays a very important role in differentiating sedimentary environments,determining the ways that sediments are transported,estimating hydrodynamic conditions,and analyzing grain-size trends.The analysis of the grain size of 20 sand samples that were taken from mid-northern,north margin,western,middle,southern,and southeast margins of the Kumtag Desert shows that grain sizes are vastly different.The grain-size parameters fall in the following range:the median diameter Mz = 1.55Φ-2.92Φ,the standard deviation σI= 0.41-1.11,the skewness SKI = ?0.11-0.31,kurtosis KG = 0.77-1.23.The frequency curves of grain size have characteristics with single peaks and multi-peaks,and most of the sand samples’ skewness appears close to asymmetric.The analytical results reveal that the sediments of the Kumtag Desert are complex and diverse,which affected by such forces as wind deposition,lacustrine sediment,and alluvial and proluvial river deposits.展开更多
Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were resea...Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were researched by ODF method and reverse pole figure quantitative analyses. The results indicate that: in the condition of the cross shear rolling, the deformation texture of rolled sheet is generally similar to that of conventional rolled sheet, however, the texture distribution through the thickness is asymmetrical. With mismatch speed ratio increasing, the amount of Goss texture increases. With reduction ratio increasing, the intensity of γ-fiber becomes strong.展开更多
Abstract This study was conducted to illustrate the differences in grain filling characteristics between different maize materials in the Northern area of Huanghuaihai Plain, to provide a theoretical basis for the bre...Abstract This study was conducted to illustrate the differences in grain filling characteristics between different maize materials in the Northern area of Huanghuaihai Plain, to provide a theoretical basis for the breeding of maize varieties with suitable maturation stage. The new maize hybrid Hengzao 8 was selected as an experimental material, and varieties Huamei 1 and Zhengdan 958 were selected as CK. The changes in grain size, water content, dry weight and grain filling characteristics during grain filling process were studied, and the yield components were analyzed. The grain sizes of the 3 maize materials increased rapidly within 20 d after pollination and reached their peak values on the 45^th d after pollination. Hengzao 8 had the biggest grains, while Zhengdan 958 showed the smallest grains. The 3 maize materials showed high growth speeds of dry matter from the 15^th to the 55^th d after pollination, Hengzao 8 being the fastest and Zhengdan 958 being the slowest. The growth speeds of grain dry matter dropped afterwards. The grain filling rates of the 3 materials fit the unimodal distribution; and Hengzao 8 presented the highest peak value, while Zhengdan 958 exhibited the lowest peak value. Grain size was positively correlated with water amount and negatively correlated with water content, and the grain filling rate was positively correlated with water amount. Regression analysis revealed that when the water contents of the 3 materials reached 57%, grain filling rates reached their peak values. The Logistic model showed that the maximum grain filling rate (Gmax) and the mean filling rate (Gmean) were higher in Hengzao 8 whose active grain filling stage, early stage (T1) , middle stage (T2) and late stage (T3) were shorter than other 2 varieties. The differences in 1 000-grain weight between the 3 materials were responsible for the differences in the yield. The grain filling characteristics of Hengzao 8 are decisive for achieving early maturation and high yield.展开更多
In order to better understand the relation between grain boundary characteristic distribution (GBCD) and the brittle cracking of ferritic stainless steel, the GBCD, impact test and bend test were investigated using ...In order to better understand the relation between grain boundary characteristic distribution (GBCD) and the brittle cracking of ferritic stainless steel, the GBCD, impact test and bend test were investigated using scanning electron microscopy (SEM) and the electron backscatter diffraction (EBSD) technique. The results show that a crack occurs preferentially at high angle boundaries, and that low angle and low-∑ coincidence site lattice(CSL) boundaries can offer resistance to the propagation of cracks. It is suggested that an optimum GBCD, i.e. a high frequency of low angle or low-∑ CSL boundaries and discontinuous high angle boundaries network can offer the potential for decreasing the ductile-to-brittle transition temoerature (DBTT) of ferritic stainless steels.展开更多
financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231);the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102);...financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231);the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102);the Great Technology Project of Ningbo, China (2013C11001)展开更多
To better understand the stress-corrosion behavior of friction stir welding(FSW),the effects of the microstructure on the stress-corrosion behavior of the FSW in a 2198-T34 aluminum alloy were investigated.The experim...To better understand the stress-corrosion behavior of friction stir welding(FSW),the effects of the microstructure on the stress-corrosion behavior of the FSW in a 2198-T34 aluminum alloy were investigated.The experimental results show that the low-angle grain boundary(LABs)of the stir zone(SZ)of FSW is significantly less than that of heated affected zone(HAZ),thermo-mechanically affected zone(TMAZ),and parent materials(PM),but the grain boundary precipitates(GBPs)T1(Al2CuLi)were less,which has a slight effect on the stress corrosion.The dislocation density in SZ was greater than that in other regions.The residual stress in SZ was+67 MPa,which is greater than that in the TMAZ.The residual stress in the HAZ and PM is-8 MPa and-32 MPa,respectively,and both compressive stresses.The corrosion potential in SZ is obviously less than that in other regions.However,micro-cracks were formed in the SZ at low strain rate,which indicates that the grain boundary characters and GBPs have no significant effect on the crack initiation in the stress-corrosion process of the AA2198-T34.Nevertheless,the residual tensile stress has significant effect on the crack initiation during the stress-corrosion process.展开更多
The feasibility of applying the grain boundary character distribution(GBCD)optimization to Inconel 625 for improving the intergranular corrosion(IGC)resistance was studied.The GBCD was obtained and characterized by el...The feasibility of applying the grain boundary character distribution(GBCD)optimization to Inconel 625 for improving the intergranular corrosion(IGC)resistance was studied.The GBCD was obtained and characterized by electron backscatter diffraction(EBSD)analysis,and its optimization was mainly attributed to annealing twins(Σ3)and twins related to boundaries formed during thermal-mechanical processing(TMP).Through TMP of 5%cold rolling and subsequent annealing at 1150℃for 5 min,the proportion of lowΣcoincidence site lattice(CSL)grain boundaries of the Inconel 625 can be enhanced to about 35.8%which mainly were ofΣ3^(n)(n=1,2,3)type.There is an increase of 24.8%compared with the solution-treated sample,and simultaneously the large-size highly-twinned grain-cluster microstructure is formed.The grain-cluster is mainly composed ofΣ3-Σ3-Σ9 orΣ3-Σ9-Σ27 triple junctions,which is mainly caused by boundary reactions during grain growth.Among them,the IGC resistance ofΣ3 grain boundaries,Σ9 grain boundaries and random grain boundaries is sequentially weakened.With the increase of the lowΣCSL grain boundary fraction,the IGC resistance of Inconel 625 improves.The essential reason is the amount ofΣ3 boundaries interrupting the random boundary network increases and the large grain-cluster arrests the penetration of IGC.展开更多
The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,an...The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing.展开更多
Beach erosion has occurred globally in recent decades due to frequent and severe storms.Dongsha beach,located in Zhujiajian Island,Zhejiang Province,China,is a typical embayed sandy beach.This study focused on the mor...Beach erosion has occurred globally in recent decades due to frequent and severe storms.Dongsha beach,located in Zhujiajian Island,Zhejiang Province,China,is a typical embayed sandy beach.This study focused on the morphodynamic response of Dongsha beach to typhoon events,based on beach topographies and surficial sediment characteristics acquired before and after four typhoon events with varying intensities.The four typhoons had different effects on the topography and sediment characteristics of Dongsha beach.Typhoons Ampil and Danas caused the largest(-51.72 m3/m)and the smallest erosion(-8.01 m3/m),respectively.Remarkable alongshore patterns of beach profile volumetric changes were found after the four typhoon events,with more erosion in the southern and central parts of the beach and few changes in the northern part.Grain size coarsening and poor sorting were the main sediment patterns on the beach influenced by different typhoons.Typhoons that occurred in the same year after another typhoon enhanced the effect of the previous typhoon on sediment coarsening and sorting variability,but this cumulative effect was not found between typhoons that occurred during different years.A comparison of the collected data revealed that the topographic state of the beach before the typhoon,typhoon characteristics,and tidal conditions were possible reasons for the difference in the responses of Dongsha beach to typhoon events.More severe beach erosion was caused by typhoons with higher intensity levels and longer durations,and high tide levels during typhoons can determine the upper limit of the beach profile erosion site.Taken together,these results can be used to improve beach management for storm prevention.展开更多
Desert-oasis ecotones are boundary areas between oases and desert ecosystems.Large efforts to control sediment and stabilize these boundaries depend on understanding sedimentary processes,especially aeolian transport ...Desert-oasis ecotones are boundary areas between oases and desert ecosystems.Large efforts to control sediment and stabilize these boundaries depend on understanding sedimentary processes,especially aeolian transport and deposition.Previous studies on aeolian sediment deposition have focused primarily on a single land surface type or a single engineering approach.Few studies have considered deposition in a multi-layer oasis protective system.A complete oasis protective system consists of an outer bare sand area,a sand barrier zone,a shrub and herbaceous plant zone,and a farmland shelter zone.This study used sedimentary analysis to quantify grain-size characteristics in samples from the four land surfaces under different types of weather conditions in the Gelintan oasis of the Tengger Desert,the fourth largest desert in China.The results showed that aeolian sediment deposition decreased from the outer bare sand area through the oasis protective system and into the interior.The four land surface types showed significant differences in deposition volume(P<0.05).Deposited sediment showed gradual decrease in dominant grain-size from sand to silt,but sediment deposited during dust weather contained a larger coarse-grained fraction.From the outer desert to the inner oasis,transport mechanisms shifted from saltation(sand)to suspension(silt and smaller)in non-dust weather.During dust weather,deposition primarily occurs from near-surface aeolian sand transport with saltation.Sediment sorting decreased from exterior to interior zones of the protective system while skewness and kurtosis showed no significant change(P<0.05).These results can help inform strategies for stabilizing and protecting desert-oasis ecotones in this region and other localities.展开更多
This study confirms the presence of 17 coastal terraces on Fildes Peninsula, Antarctica based on field observations and grain size analysis. The terraces formed by isostatic uplift during climate warming and glacier m...This study confirms the presence of 17 coastal terraces on Fildes Peninsula, Antarctica based on field observations and grain size analysis. The terraces formed by isostatic uplift during climate warming and glacier melting, and each level corresponds to a relatively stable period of climate. The grain size characteristics indicate an overlapping sedimentary origin for the sediments on the coastal terraces. The consistency of regional sea level rise, climate change, and glacial area suggest the presence of similar coastal terraces on King George Island since 18.0 ka.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40671185)National Key Technologies R&D Program of China (No. 2006BAD26B03)
文摘Widespread aeolian sediments have been found in the middle reaches of the Yarlung Zangbo River, China, The grain-size characteristics of sediments from Cha'er Section in the area were analyzed. The results show that the section include one stratum of paleo-mobile dunes, four strata of paleo-semi-fixed dunes, two strata of paleo-fixed dunes, one stratum of sandy immature soils. The paleo-mobile and paleo-semi-fixed dune sand in this section are similar to modem aeolian sand in either grain-size composition or Mz and c distribution. Compared the above types of dunes each other, the content of sand substance decreases, while the content of silt and clay increases for paleo-fixed dunes and sandy immature soils. Combined with age data for each stratum, the analysis shows that these strata are the products of climate changes and the evolution of aeolian landforms. The evolutionary sequence of the paleoclimate and of aeolian activities in the valley since 8600 yr B.P. reveals four stages: 8600-5700 yr B.P., when the paleoclimate was cold and dry, with strong winds, thereby activating dunes; 5700-3600 yr B.P., when it was warm and wet, with weak winds, causing dunes to undergo soil-forming processes; 3600-1900 yr B.P., when climate shifted from cold-dry with strong winds to warm-wet with weak winds, and activated dunes were fixed again; and 1900 yr B.P. -present, when the climate became fine, with weak winds, fixing dunes again.
基金supported and assisted by the National Science and Technology Infrastructure Program (2006FY110800)the National Natural Science Foundation Project (40775019)+1 种基金the National Scientific Support Planning Subject (2008BAC40B05-01)the XinJiang Uighur Autonomous Region Science and Technology Key Projects (200833119)
文摘The Kumtag Desert is located in the arid northwestern portion of China,and is considered China’s sixth-largest desert.Grain-size analysis of the sand plays a very important role in differentiating sedimentary environments,determining the ways that sediments are transported,estimating hydrodynamic conditions,and analyzing grain-size trends.The analysis of the grain size of 20 sand samples that were taken from mid-northern,north margin,western,middle,southern,and southeast margins of the Kumtag Desert shows that grain sizes are vastly different.The grain-size parameters fall in the following range:the median diameter Mz = 1.55Φ-2.92Φ,the standard deviation σI= 0.41-1.11,the skewness SKI = ?0.11-0.31,kurtosis KG = 0.77-1.23.The frequency curves of grain size have characteristics with single peaks and multi-peaks,and most of the sand samples’ skewness appears close to asymmetric.The analytical results reveal that the sediments of the Kumtag Desert are complex and diverse,which affected by such forces as wind deposition,lacustrine sediment,and alluvial and proluvial river deposits.
基金National Natural Science Foundation of China!(No. 59671037).
文摘Commercial grain oriented silicon steel was cold rolled to thickness from 0.06 to 0.10 mm by cross shear rolling, then annealed in vacuum or a hydrogen atmosphere furnace. Deformation textures of the sheets were researched by ODF method and reverse pole figure quantitative analyses. The results indicate that: in the condition of the cross shear rolling, the deformation texture of rolled sheet is generally similar to that of conventional rolled sheet, however, the texture distribution through the thickness is asymmetrical. With mismatch speed ratio increasing, the amount of Goss texture increases. With reduction ratio increasing, the intensity of γ-fiber becomes strong.
基金Supported by Special Fund for National System(Maize)of Modern Industrial Technology(nycytx-02)Science and Technology Support Program of Hebei Province(16226323D-X)Youth Science Fund of Hebei Academy of Agriculture and Forestry Sciences(A2015040101)~~
文摘Abstract This study was conducted to illustrate the differences in grain filling characteristics between different maize materials in the Northern area of Huanghuaihai Plain, to provide a theoretical basis for the breeding of maize varieties with suitable maturation stage. The new maize hybrid Hengzao 8 was selected as an experimental material, and varieties Huamei 1 and Zhengdan 958 were selected as CK. The changes in grain size, water content, dry weight and grain filling characteristics during grain filling process were studied, and the yield components were analyzed. The grain sizes of the 3 maize materials increased rapidly within 20 d after pollination and reached their peak values on the 45^th d after pollination. Hengzao 8 had the biggest grains, while Zhengdan 958 showed the smallest grains. The 3 maize materials showed high growth speeds of dry matter from the 15^th to the 55^th d after pollination, Hengzao 8 being the fastest and Zhengdan 958 being the slowest. The growth speeds of grain dry matter dropped afterwards. The grain filling rates of the 3 materials fit the unimodal distribution; and Hengzao 8 presented the highest peak value, while Zhengdan 958 exhibited the lowest peak value. Grain size was positively correlated with water amount and negatively correlated with water content, and the grain filling rate was positively correlated with water amount. Regression analysis revealed that when the water contents of the 3 materials reached 57%, grain filling rates reached their peak values. The Logistic model showed that the maximum grain filling rate (Gmax) and the mean filling rate (Gmean) were higher in Hengzao 8 whose active grain filling stage, early stage (T1) , middle stage (T2) and late stage (T3) were shorter than other 2 varieties. The differences in 1 000-grain weight between the 3 materials were responsible for the differences in the yield. The grain filling characteristics of Hengzao 8 are decisive for achieving early maturation and high yield.
文摘In order to better understand the relation between grain boundary characteristic distribution (GBCD) and the brittle cracking of ferritic stainless steel, the GBCD, impact test and bend test were investigated using scanning electron microscopy (SEM) and the electron backscatter diffraction (EBSD) technique. The results show that a crack occurs preferentially at high angle boundaries, and that low angle and low-∑ coincidence site lattice(CSL) boundaries can offer resistance to the propagation of cracks. It is suggested that an optimum GBCD, i.e. a high frequency of low angle or low-∑ CSL boundaries and discontinuous high angle boundaries network can offer the potential for decreasing the ductile-to-brittle transition temoerature (DBTT) of ferritic stainless steels.
基金financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231)the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102)the Great Technology Project of Ningbo, China (2013C11001)
文摘financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231);the National Public Services Sectors (Agricultural) Research Projects, Ministry of Agriculture, China (201303102);the Great Technology Project of Ningbo, China (2013C11001)
基金the National Natural Science Foundation of China(No.51771139)the Hunan Natural Science Foundation(No.2019JJ60062)。
文摘To better understand the stress-corrosion behavior of friction stir welding(FSW),the effects of the microstructure on the stress-corrosion behavior of the FSW in a 2198-T34 aluminum alloy were investigated.The experimental results show that the low-angle grain boundary(LABs)of the stir zone(SZ)of FSW is significantly less than that of heated affected zone(HAZ),thermo-mechanically affected zone(TMAZ),and parent materials(PM),but the grain boundary precipitates(GBPs)T1(Al2CuLi)were less,which has a slight effect on the stress corrosion.The dislocation density in SZ was greater than that in other regions.The residual stress in SZ was+67 MPa,which is greater than that in the TMAZ.The residual stress in the HAZ and PM is-8 MPa and-32 MPa,respectively,and both compressive stresses.The corrosion potential in SZ is obviously less than that in other regions.However,micro-cracks were formed in the SZ at low strain rate,which indicates that the grain boundary characters and GBPs have no significant effect on the crack initiation in the stress-corrosion process of the AA2198-T34.Nevertheless,the residual tensile stress has significant effect on the crack initiation during the stress-corrosion process.
基金Funded in part by the National Key Research and Development Program of China(No.2017YFA07007003)the National Natural Science Foundation of China(No.51661019)+1 种基金the Major Projects of Science and Technology in Gansu Province(No.145RTSA004)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology。
文摘The feasibility of applying the grain boundary character distribution(GBCD)optimization to Inconel 625 for improving the intergranular corrosion(IGC)resistance was studied.The GBCD was obtained and characterized by electron backscatter diffraction(EBSD)analysis,and its optimization was mainly attributed to annealing twins(Σ3)and twins related to boundaries formed during thermal-mechanical processing(TMP).Through TMP of 5%cold rolling and subsequent annealing at 1150℃for 5 min,the proportion of lowΣcoincidence site lattice(CSL)grain boundaries of the Inconel 625 can be enhanced to about 35.8%which mainly were ofΣ3^(n)(n=1,2,3)type.There is an increase of 24.8%compared with the solution-treated sample,and simultaneously the large-size highly-twinned grain-cluster microstructure is formed.The grain-cluster is mainly composed ofΣ3-Σ3-Σ9 orΣ3-Σ9-Σ27 triple junctions,which is mainly caused by boundary reactions during grain growth.Among them,the IGC resistance ofΣ3 grain boundaries,Σ9 grain boundaries and random grain boundaries is sequentially weakened.With the increase of the lowΣCSL grain boundary fraction,the IGC resistance of Inconel 625 improves.The essential reason is the amount ofΣ3 boundaries interrupting the random boundary network increases and the large grain-cluster arrests the penetration of IGC.
基金financially supported by the National Natural Science Foundation of China(No.52201099)the Scientific Research Starting Foundation of Anhui Polytechnic University,China(No.S022021004)+2 种基金Undergraduate Scientific Research Project of Anhui Polytechnic University,ChinaSchool Level Scientific Research Project of Anhui Polytechnic University,China(No.Xjky2022028)the Open Research Fund of Anhui Key Laboratory of High-Performance Non-ferrous Metal Materials,China(No.YSJS-2023-1)。
文摘The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing.
基金The Zhejiang Provincial Natural Science Foundation of China under contract No.LHZ22D060001the Scientific Research Funds of the Second Institute of Oceanography,Ministry of Natural Resources under contract Nos JG2315 and XRJH2309the National Key R&D Program of China under contract No.2022YFC3106200.
文摘Beach erosion has occurred globally in recent decades due to frequent and severe storms.Dongsha beach,located in Zhujiajian Island,Zhejiang Province,China,is a typical embayed sandy beach.This study focused on the morphodynamic response of Dongsha beach to typhoon events,based on beach topographies and surficial sediment characteristics acquired before and after four typhoon events with varying intensities.The four typhoons had different effects on the topography and sediment characteristics of Dongsha beach.Typhoons Ampil and Danas caused the largest(-51.72 m3/m)and the smallest erosion(-8.01 m3/m),respectively.Remarkable alongshore patterns of beach profile volumetric changes were found after the four typhoon events,with more erosion in the southern and central parts of the beach and few changes in the northern part.Grain size coarsening and poor sorting were the main sediment patterns on the beach influenced by different typhoons.Typhoons that occurred in the same year after another typhoon enhanced the effect of the previous typhoon on sediment coarsening and sorting variability,but this cumulative effect was not found between typhoons that occurred during different years.A comparison of the collected data revealed that the topographic state of the beach before the typhoon,typhoon characteristics,and tidal conditions were possible reasons for the difference in the responses of Dongsha beach to typhoon events.More severe beach erosion was caused by typhoons with higher intensity levels and longer durations,and high tide levels during typhoons can determine the upper limit of the beach profile erosion site.Taken together,these results can be used to improve beach management for storm prevention.
基金sponsored as a sub-project of the National Key Research and Development Program of China-Desertification Land Management and Sand Industry Technology Research and Development and Demonstration in Inner Mongolia Desertification Area,named Key Techniques and Demonstration of Sand Damage Control in Oasis and Saline-alkali Lake(2016YFC0501003)a sub-project of the National Key Research and Development Program of Study on Restoration and Protection of Typical Fragile Ecology,named Study and Demonstration of Sand-fixing and Wind-breaking Techniques of Cyperus Esculentus L.in North Wind-blown Sand Region(2019YFC0507600)。
文摘Desert-oasis ecotones are boundary areas between oases and desert ecosystems.Large efforts to control sediment and stabilize these boundaries depend on understanding sedimentary processes,especially aeolian transport and deposition.Previous studies on aeolian sediment deposition have focused primarily on a single land surface type or a single engineering approach.Few studies have considered deposition in a multi-layer oasis protective system.A complete oasis protective system consists of an outer bare sand area,a sand barrier zone,a shrub and herbaceous plant zone,and a farmland shelter zone.This study used sedimentary analysis to quantify grain-size characteristics in samples from the four land surfaces under different types of weather conditions in the Gelintan oasis of the Tengger Desert,the fourth largest desert in China.The results showed that aeolian sediment deposition decreased from the outer bare sand area through the oasis protective system and into the interior.The four land surface types showed significant differences in deposition volume(P<0.05).Deposited sediment showed gradual decrease in dominant grain-size from sand to silt,but sediment deposited during dust weather contained a larger coarse-grained fraction.From the outer desert to the inner oasis,transport mechanisms shifted from saltation(sand)to suspension(silt and smaller)in non-dust weather.During dust weather,deposition primarily occurs from near-surface aeolian sand transport with saltation.Sediment sorting decreased from exterior to interior zones of the protective system while skewness and kurtosis showed no significant change(P<0.05).These results can help inform strategies for stabilizing and protecting desert-oasis ecotones in this region and other localities.
基金funded by the Chinese Polar Environment Comprehensive Investigation & Assessment Programs (Grant no. CHINARE2015-02-01)the Chinese Polar Scientific Strategic Research Programme (Grant no. 20120101)
文摘This study confirms the presence of 17 coastal terraces on Fildes Peninsula, Antarctica based on field observations and grain size analysis. The terraces formed by isostatic uplift during climate warming and glacier melting, and each level corresponds to a relatively stable period of climate. The grain size characteristics indicate an overlapping sedimentary origin for the sediments on the coastal terraces. The consistency of regional sea level rise, climate change, and glacial area suggest the presence of similar coastal terraces on King George Island since 18.0 ka.