For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo...For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.展开更多
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
The wind and temperature fields at 20 to 55 km above the Antigua launch site(17°N,61°W)were analyzed by using sounding rocket data published by the research organization on Stratosphere-Troposphere Processes...The wind and temperature fields at 20 to 55 km above the Antigua launch site(17°N,61°W)were analyzed by using sounding rocket data published by the research organization on Stratosphere-Troposphere Processes and their Role in Climate(SPARC).The results showed distinct variations in the wind and temperature fields at different heights from the 1960s to the 1990s.The overall zonal wind speed showed a significant increasing trend with the year,and the overall change in meridional wind speed showed a falling trend from 1976 to 1990,whereas the temperature field showed a significant cooling trend from 1964 to 1990.The times the trends mutated varied at different levels.By taking the altitudes at 20,35,and 50 km as representatives,we found that the zonal wind speed trend had mutated in 1988,1986,and 1986,respectively;that the meridional wind speed trend had mutated in 1990,1986,and 1990,respectively;and that the temperature trend had mutated separately in 1977,1973,and 1967,respectively.Characteristics of the periodic wind and temperature field variations at different heights were also analyzed,and obvious differences were found in time scale variations across the different layers.The zonal and meridional wind fields were basically characterized as having a significant periodic variation of 5 years across the three layers,and each level was characterized as having a periodic variation of less than 5 years.Temperature field variation at the three levels was basically characterized as occurring in 10-year and 5-year cycles.展开更多
In order to clarify the charging characteristics of suspension droplets in ion flow field under different temperatures and humidity,the effective charging factor used to characterize the charging characteristics of su...In order to clarify the charging characteristics of suspension droplets in ion flow field under different temperatures and humidity,the effective charging factor used to characterize the charging characteristics of suspension droplets is introduced in this paper,and a calculation method of charging factor is proposed based on the upstream finite element method(FEM).Then,the charging factor under different temperatures and humidity is calculated,and the analytic expression of the charging factor considering the influence of temperature and humidity is obtained by fitting the calculation results.The influence of suspension droplets on the ion flow field is analyzed.The results show that the charging factor is small and increases little with the relative humidity when the relative humidity is less than 60%,and the charging factor is large and increases rapidly with the relative humidity when the relative humidity is more than 60%.At the same relative humidity,the charging factor increases linearly with the temperature.The influence of charged suspension droplets on the ion flow field can be ignored when the relative humidity is less than 60%and must be considered under high temperature and humidity.The calculation method and analytic expression of the charging factor proposed in this paper can be used to model of ion flow field considering the influence of temperature and humidity and provide technical support for the construction of HVDC transmission lines across high temperature and humidity.展开更多
A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wi...A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.展开更多
The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stati...The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.展开更多
This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The resu...This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The results show that with the influence of adjacent high-rise building, numerical simulation is a good way to study the wind field around high-rise building and the distribution of wind pressure on building’ surface. The pressures on the windward surface are positive with the maximum at 2/3 H height and have lower values on the top and bottom. The pressures on the leeward surface and two sides were negative. Due to the serious flow separation at the corner of building’s windward, the wind field has a high turbulent kinetic energy.展开更多
Aiming at solving problems of low efficiency,low cable capacity in current 300m open-pit mine cable winding truck,a 900 m cable winding plan was proposed.In this paper,the mechanism of the thermal effect of the cable ...Aiming at solving problems of low efficiency,low cable capacity in current 300m open-pit mine cable winding truck,a 900 m cable winding plan was proposed.In this paper,the mechanism of the thermal effect of the cable was described,and a two-dimensional axisymmetric electromagnetic-fluid-temperature multiphysics coupling model of the cable reel was established regarding the 900m cable reel as independent system.Considering the structure of the drum,the number of cable winding layers,the factors of heat conduction,heat radiation and convective heat transfer in the actual working process,the steady state analysis of the multi-physical field coupling was carried out.The sum of the losses of each part of the cable was obtained through the calculation of electromagnetic field,which was used as a heat source to calculate and analyze the temperature distribution of different layers of cable winding,as well as the temperature distribution and heat dissipation characteristics of different structures of the drum.The results show that three layers of cable winding is the best design.The lowest temperature of closed cylindrical drum is 70℃after heat dissipation,which has obvious advantages compared with the lowest temperature of 85℃after heat dissipation of squirrel-cage cylindrical drum.The results provide a reliable theoretical basis for the research and development of a new type of mine cable winding truck with 900 m cable capacity.展开更多
Based on the Kangding Tunnel No.2 project,this study analyzes the heat exchange between air and the rock mass surrounding the tunnel under wind flow by the finite difference method.The influence of factors on the temp...Based on the Kangding Tunnel No.2 project,this study analyzes the heat exchange between air and the rock mass surrounding the tunnel under wind flow by the finite difference method.The influence of factors on the temperature field of a tunnel in cold regions,including ventilation and initial conditions,is investigated.The results show that:1)The lower the air temperature,the greater the wind speed,the larger the rock mass temperature influence circle and the greater the frozen depth;2)When the wind speed is less than 3 m/s,its change has an obvious impact on the rock mass temperature;3)For every drop of 5C in air temperature,the frozen depth increases by about 5 m,indicating that the air temperature is an essential factor affecting the rock mass temperature regime;4)The higher the initial rock mass temperature is,the smaller the influence circle on the rock mass is.And to a certain extent,it determines the temperature distribution in the rock mass within a specific range from the wall surface.展开更多
In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point...In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices.展开更多
GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with an atomic layer deposited Al2O3 gate dielectric and a self-aligned Si-implanted source/drain are experimentally demonstrated. Temperat...GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with an atomic layer deposited Al2O3 gate dielectric and a self-aligned Si-implanted source/drain are experimentally demonstrated. Temperature dependent electrical characteristics are investigated. Different electrical behaviors are observed in two temperature regions, and the un- derlying mechanisms are discussed. It is found that the reverse-bias pn junction leakage of the drain/substrate is the main component of the off-state drain leakage current, which is generation-current dominated in the low temperature regions and is diffusion-current dominated in the high temperature regions. Methods to further reduce the off-state drain leakage current are given.展开更多
In the 6000 kN·m energy level dynamic compaction on Inner Mongolia wind-blown sand foundation treatment process, the dynamic characteristics and dynamic response are measured. Vibration action time, vibration mai...In the 6000 kN·m energy level dynamic compaction on Inner Mongolia wind-blown sand foundation treatment process, the dynamic characteristics and dynamic response are measured. Vibration action time, vibration main frequency, peak acceleration and peak velocity are analyzed. The vibration acting time is very short, the vertical average vibration acting time increases obviously with distance increasing, and the horizontal average vibration time does hardly change. The main frequency of vibration is at 4.60 - 24.90 Hz, which depends on the soil properties and soil layer distribution. The peak acceleration and peak velocity space distribution are similar. The maximum of horizontal acceleration peak is close to vertical velocity peak, and is near to 51 g under rammer. The maximum of horizontal velocity peak is close to vertical velocity peak, and is near to 54 m/s under rammer. The peak acceleration and velocity are rapidly attenuated, but the vertical peak acceleration and peak velocity are slowly attenuated than horizontal direction. The effective treating depth arrives 13 m for wind-blown wind, peak acceleration is 1.8 g or so, and peak velocity is 2.1 m/s or so. Horizontal treating range is 2.6 times of rammer diameter, and vertical treating range is 5.65 times of rammer diameter.展开更多
In this study, we investigate the demagnetization resistance of a concentrated winding IPMSM (interior permanent magnet synchronous motor) accounting for field weakening control by changing the magnetization directi...In this study, we investigate the demagnetization resistance of a concentrated winding IPMSM (interior permanent magnet synchronous motor) accounting for field weakening control by changing the magnetization direction of the permanent magnet under a high-temperature environment. IPMSMs are investigated by FEA (finite element analysis) using the same volume of the permanent magnet while changing the magnet’s width, thickness and magnetic field orientation angle. FEA found that a V-shaped angle Va = 100° and a changed magnet length of 97% using an oblique magnetic-field-oriented magnet strike a good balance between demagnetization resistance and torque at 180 ℃. Comparison between demagnetization of negative d-axis current (current phase β = 90°) and demagnetization of field weakening control (β = 80°) using concentrated winding IPMSM with V-shaped angle Va = 100° is conducted. With the demagnetization factor at β = 80° for β = 90°, the demagnetization factor 0.39 (2.6 times) at α = 0° decreases to 0.23 (4.3 times) at α = 20°. The demagnetization resistance in the field weakening control is further improved.展开更多
To investigate the influence of temperature field of friction stir welding(FSW)2219 aluminum alloy thick plate,and to achieve effective prediction of temperature field,the authors establish a three-dimensional numeric...To investigate the influence of temperature field of friction stir welding(FSW)2219 aluminum alloy thick plate,and to achieve effective prediction of temperature field,the authors establish a three-dimensional numerical simulation model of FSW 18 mm thick 2219 aluminum alloy based on ABAQUS/CEL,considering the morphological characteristics of the tool pin.The simulations of plunging,dwelling,and welding stages are achieved.The distribution of temperature and temperature cycle curve of characteristic points in welding process are obtained.The validity of the simulation results is verified by experiments.The influence of the tool-rotational speed and welding speed on temperature field is explored.The work lays a foundation for the prediction and control of temperature field in FSW medium thickness 2219 aluminum alloy,and provides reference for selection of welding parameters to ensure high quality welding of fuel tank of heavy-lift rocket.展开更多
The vertical distributions of the wind field and temperature field of the boundary layer were very peculiar in Qingdao area, China. Under the height of 1500m, the wind field appeared as one pike two valley type: th...The vertical distributions of the wind field and temperature field of the boundary layer were very peculiar in Qingdao area, China. Under the height of 1500m, the wind field appeared as one pike two valley type: the wind speed was relatively low near surface, got bigger between 300m to 400m, decreased over 500m, and increased again gradually over 1000m. The temperature stratification was stable in the morning and evening, and it became unstable below 200m after noon. As far as mixed layer was concerned, it was not very high, generally about 400m, sometimes it reached 700m high. Multiple layer inversion often appeared in low altitude. Northern wind was prevailing in winter, so southern in summer. The wind field was often influenced by Jianghuai cyclone and Huanghuai cyclone. Convergence air current between lower level and higher level emerged when the cyclones passed Qingdao area. Introducing straight and shear air current, pollutants emitted from point sources were modeled by advection diffusion equation. The result indicated that pollutants were transported far away under one straight air current. In rainy days, pollutants were accumulated in local area and the concentrations were high. When wind direction appeared shear between higher level and lower level,the transportation of pollutants was more limited. In rain days,acid rain was form by chemical process at a near distance.展开更多
Influences of temperature of medium on proton conductivity in hydrogen-bonded systems exposed in an electricfield are numerically studied by the fourth-order Runge-Kutta method with our model. The results obtained sho...Influences of temperature of medium on proton conductivity in hydrogen-bonded systems exposed in an electricfield are numerically studied by the fourth-order Runge-Kutta method with our model. The results obtained show that the proton soliton is very robust against thermal perturbation and damping of medium, and is thermally stable in the temperature range T ≤ 273 K. From the simulation we find out that the mobility (or velocity) of proton conduction in ice crystal is a nonmonotonic function of temperature in the temperature range 170-273 K: i.e., it increases initially, reaches a maximum at about 191 K, subsequently decreases to a minimum at about 211 K, and then increases again. This changed rule of mobility is qualitatively consistent with its experimental data in ice in the same temperature range. This result provides an evidence for existence of solitons in the hydrogen-bonded systems.展开更多
Numerical modeling and studies of the wind fields at the junction of three continents: over the complex terrains of the South-east Europe, Asia Minor, Middle East, Caucasus and over the Black, Caspian and Medi-terrane...Numerical modeling and studies of the wind fields at the junction of three continents: over the complex terrains of the South-east Europe, Asia Minor, Middle East, Caucasus and over the Black, Caspian and Medi-terranean seas have been carried out for the first time. Traveling synoptic scale vortex wave generation and subsequent evolution of orographic vortices are discovered. Wind fields, spatial distribution of the coefficients of subgrid scale horizontal and vertical turbulence and the Richardson number are calculated. It is shown that the local relief, atmospheric hydrothermodynamics and air-proof tropopause facilitate the generation of β-mesoscale vortex and turbulence amplification in the vicinity of the atmospheric boundary layer and tropopause. Also turbulence parameters distribution in the troposphere has the same nature as in the stratosphere and mesosphere: turbulence coefficients, stratification of the vertical profiles of the Richardson number, thickness of the turbulent and laminar layers.展开更多
This paper investigates the current-voltage characteristics (CVC) strain of p-n-junction in a strong microwave (MW) field and shows that the deformation increases the current generated in the p-n-junction. We analyze ...This paper investigates the current-voltage characteristics (CVC) strain of p-n-junction in a strong microwave (MW) field and shows that the deformation increases the current generated in the p-n-junction. We analyze the current-voltage characteristics of p-n-junction in which three-dimensional space (I,U,e) gives more complete information than the two-dimensional.展开更多
文摘For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
基金supported by the National Natural Science Foundat ion of China(Grant no.41875045)
文摘The wind and temperature fields at 20 to 55 km above the Antigua launch site(17°N,61°W)were analyzed by using sounding rocket data published by the research organization on Stratosphere-Troposphere Processes and their Role in Climate(SPARC).The results showed distinct variations in the wind and temperature fields at different heights from the 1960s to the 1990s.The overall zonal wind speed showed a significant increasing trend with the year,and the overall change in meridional wind speed showed a falling trend from 1976 to 1990,whereas the temperature field showed a significant cooling trend from 1964 to 1990.The times the trends mutated varied at different levels.By taking the altitudes at 20,35,and 50 km as representatives,we found that the zonal wind speed trend had mutated in 1988,1986,and 1986,respectively;that the meridional wind speed trend had mutated in 1990,1986,and 1990,respectively;and that the temperature trend had mutated separately in 1977,1973,and 1967,respectively.Characteristics of the periodic wind and temperature field variations at different heights were also analyzed,and obvious differences were found in time scale variations across the different layers.The zonal and meridional wind fields were basically characterized as having a significant periodic variation of 5 years across the three layers,and each level was characterized as having a periodic variation of less than 5 years.Temperature field variation at the three levels was basically characterized as occurring in 10-year and 5-year cycles.
基金supported by National Natural Science Foundation of China(No.52077074)。
文摘In order to clarify the charging characteristics of suspension droplets in ion flow field under different temperatures and humidity,the effective charging factor used to characterize the charging characteristics of suspension droplets is introduced in this paper,and a calculation method of charging factor is proposed based on the upstream finite element method(FEM).Then,the charging factor under different temperatures and humidity is calculated,and the analytic expression of the charging factor considering the influence of temperature and humidity is obtained by fitting the calculation results.The influence of suspension droplets on the ion flow field is analyzed.The results show that the charging factor is small and increases little with the relative humidity when the relative humidity is less than 60%,and the charging factor is large and increases rapidly with the relative humidity when the relative humidity is more than 60%.At the same relative humidity,the charging factor increases linearly with the temperature.The influence of charged suspension droplets on the ion flow field can be ignored when the relative humidity is less than 60%and must be considered under high temperature and humidity.The calculation method and analytic expression of the charging factor proposed in this paper can be used to model of ion flow field considering the influence of temperature and humidity and provide technical support for the construction of HVDC transmission lines across high temperature and humidity.
基金The National Science Foundation of China under Grant No.51378111the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-13-0128+2 种基金the Fok Ying-Tong Education Foundation for Young Teachersin the Higher Education Institutions of China under Grant No.142007the Fundamental Research Funds for the Central Universities under Grant No.2242012R30002the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering under Grant No.JSKL2011YB02
文摘A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.
基金supported by the Major Science and Technology Projects of Inner Mongolia Autonomous Region of China(zdzx2018058-3)the National Key Research and Development Project of China(2016YFC0500906-3)the Scientific and Technological Innovation Guiding Fund Project of Inner Mongolia Autonomous Region of China and the Scientific Research Project of Universities in Inner Mongolia Autonomous Region of China(NJZY19052)。
文摘The operation and power generation of utility-scale solar energy infrastructure in desert areas are affected by changes in surface erosion processes resulting from the construction of solar photovoltaic(PV)power stations.However,few studies have addressed the interactions between solar PV arrays and aeolian erosion processes.In this study,wind flow field characteristics and the vertical distribution of sediments were investigated in the near-surface transport layer at three different locations with respect to the solar PV arrays in a 200 WM-p PV power station in the central Hobq Desert,northwestern China.The results indicate that the sediment transport varied around the panels,with the greatest transport occurring between the panels,followed by behind and in front of the panels.The sediment fluxes of all of the observation sites obey an exponential function.The secondary flow field zones formed around the PV panels:the conflux accelerating zone between the panels,the resistance decelerating zone of the under panels,and the transition zone of the rapid velocity increase in front of and behind the panels.This resulted in a greater shear force in front of the panels under the downward flow diversion effect of PV panels,and the wind erosion depressions were finally formed here.The results of this study provide information for planning better technical schemes for wind-sand hazards at solar PV power stations,which would ensure operational stability and safety in desert areas.
文摘This paper based on Reynolds-averaged Navier-Stokes equations standard ?model [1];the surface pressure on the wind field around two adjacent high-rise buildings was numerically simulated with software Fluent. The results show that with the influence of adjacent high-rise building, numerical simulation is a good way to study the wind field around high-rise building and the distribution of wind pressure on building’ surface. The pressures on the windward surface are positive with the maximum at 2/3 H height and have lower values on the top and bottom. The pressures on the leeward surface and two sides were negative. Due to the serious flow separation at the corner of building’s windward, the wind field has a high turbulent kinetic energy.
基金This work was supported in part by 2019 Local Project of Science and Tech nology Research Service of Liaoning Provincial Department of Education(LJ2019FL003)by 2019 Science and Technology Research and Innovation Te am Project of Liaoning Provincial Department of Education(LT2019007)by 2020 Youth Science and Technology Talents"Nursery"Projects of Scient ific Research of Liaoning Province Education Department(LJ2020QNL019).
文摘Aiming at solving problems of low efficiency,low cable capacity in current 300m open-pit mine cable winding truck,a 900 m cable winding plan was proposed.In this paper,the mechanism of the thermal effect of the cable was described,and a two-dimensional axisymmetric electromagnetic-fluid-temperature multiphysics coupling model of the cable reel was established regarding the 900m cable reel as independent system.Considering the structure of the drum,the number of cable winding layers,the factors of heat conduction,heat radiation and convective heat transfer in the actual working process,the steady state analysis of the multi-physical field coupling was carried out.The sum of the losses of each part of the cable was obtained through the calculation of electromagnetic field,which was used as a heat source to calculate and analyze the temperature distribution of different layers of cable winding,as well as the temperature distribution and heat dissipation characteristics of different structures of the drum.The results show that three layers of cable winding is the best design.The lowest temperature of closed cylindrical drum is 70℃after heat dissipation,which has obvious advantages compared with the lowest temperature of 85℃after heat dissipation of squirrel-cage cylindrical drum.The results provide a reliable theoretical basis for the research and development of a new type of mine cable winding truck with 900 m cable capacity.
基金supported by the National Natural Science Foundation of China(42177144,42077274,51774231,42277172)Funded by the Natural Science Basic Research Program of Shaanxi Province(2018JQ4026,2020JZ-53).
文摘Based on the Kangding Tunnel No.2 project,this study analyzes the heat exchange between air and the rock mass surrounding the tunnel under wind flow by the finite difference method.The influence of factors on the temperature field of a tunnel in cold regions,including ventilation and initial conditions,is investigated.The results show that:1)The lower the air temperature,the greater the wind speed,the larger the rock mass temperature influence circle and the greater the frozen depth;2)When the wind speed is less than 3 m/s,its change has an obvious impact on the rock mass temperature;3)For every drop of 5C in air temperature,the frozen depth increases by about 5 m,indicating that the air temperature is an essential factor affecting the rock mass temperature regime;4)The higher the initial rock mass temperature is,the smaller the influence circle on the rock mass is.And to a certain extent,it determines the temperature distribution in the rock mass within a specific range from the wall surface.
基金Project supported by the National Natural Science Foundation of China(Grant No.61306006)
文摘In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00602)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011ZX02708-002)
文摘GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with an atomic layer deposited Al2O3 gate dielectric and a self-aligned Si-implanted source/drain are experimentally demonstrated. Temperature dependent electrical characteristics are investigated. Different electrical behaviors are observed in two temperature regions, and the un- derlying mechanisms are discussed. It is found that the reverse-bias pn junction leakage of the drain/substrate is the main component of the off-state drain leakage current, which is generation-current dominated in the low temperature regions and is diffusion-current dominated in the high temperature regions. Methods to further reduce the off-state drain leakage current are given.
文摘In the 6000 kN·m energy level dynamic compaction on Inner Mongolia wind-blown sand foundation treatment process, the dynamic characteristics and dynamic response are measured. Vibration action time, vibration main frequency, peak acceleration and peak velocity are analyzed. The vibration acting time is very short, the vertical average vibration acting time increases obviously with distance increasing, and the horizontal average vibration time does hardly change. The main frequency of vibration is at 4.60 - 24.90 Hz, which depends on the soil properties and soil layer distribution. The peak acceleration and peak velocity space distribution are similar. The maximum of horizontal acceleration peak is close to vertical velocity peak, and is near to 51 g under rammer. The maximum of horizontal velocity peak is close to vertical velocity peak, and is near to 54 m/s under rammer. The peak acceleration and velocity are rapidly attenuated, but the vertical peak acceleration and peak velocity are slowly attenuated than horizontal direction. The effective treating depth arrives 13 m for wind-blown wind, peak acceleration is 1.8 g or so, and peak velocity is 2.1 m/s or so. Horizontal treating range is 2.6 times of rammer diameter, and vertical treating range is 5.65 times of rammer diameter.
文摘In this study, we investigate the demagnetization resistance of a concentrated winding IPMSM (interior permanent magnet synchronous motor) accounting for field weakening control by changing the magnetization direction of the permanent magnet under a high-temperature environment. IPMSMs are investigated by FEA (finite element analysis) using the same volume of the permanent magnet while changing the magnet’s width, thickness and magnetic field orientation angle. FEA found that a V-shaped angle Va = 100° and a changed magnet length of 97% using an oblique magnetic-field-oriented magnet strike a good balance between demagnetization resistance and torque at 180 ℃. Comparison between demagnetization of negative d-axis current (current phase β = 90°) and demagnetization of field weakening control (β = 80°) using concentrated winding IPMSM with V-shaped angle Va = 100° is conducted. With the demagnetization factor at β = 80° for β = 90°, the demagnetization factor 0.39 (2.6 times) at α = 0° decreases to 0.23 (4.3 times) at α = 20°. The demagnetization resistance in the field weakening control is further improved.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0709003)Dalian Science and Technology Innovation Fund(Grant No.2020JJ26GX041)the Fundamental Research Funds for the Central Universities(Grant No.DUT20ZD204)。
文摘To investigate the influence of temperature field of friction stir welding(FSW)2219 aluminum alloy thick plate,and to achieve effective prediction of temperature field,the authors establish a three-dimensional numerical simulation model of FSW 18 mm thick 2219 aluminum alloy based on ABAQUS/CEL,considering the morphological characteristics of the tool pin.The simulations of plunging,dwelling,and welding stages are achieved.The distribution of temperature and temperature cycle curve of characteristic points in welding process are obtained.The validity of the simulation results is verified by experiments.The influence of the tool-rotational speed and welding speed on temperature field is explored.The work lays a foundation for the prediction and control of temperature field in FSW medium thickness 2219 aluminum alloy,and provides reference for selection of welding parameters to ensure high quality welding of fuel tank of heavy-lift rocket.
文摘The vertical distributions of the wind field and temperature field of the boundary layer were very peculiar in Qingdao area, China. Under the height of 1500m, the wind field appeared as one pike two valley type: the wind speed was relatively low near surface, got bigger between 300m to 400m, decreased over 500m, and increased again gradually over 1000m. The temperature stratification was stable in the morning and evening, and it became unstable below 200m after noon. As far as mixed layer was concerned, it was not very high, generally about 400m, sometimes it reached 700m high. Multiple layer inversion often appeared in low altitude. Northern wind was prevailing in winter, so southern in summer. The wind field was often influenced by Jianghuai cyclone and Huanghuai cyclone. Convergence air current between lower level and higher level emerged when the cyclones passed Qingdao area. Introducing straight and shear air current, pollutants emitted from point sources were modeled by advection diffusion equation. The result indicated that pollutants were transported far away under one straight air current. In rainy days, pollutants were accumulated in local area and the concentrations were high. When wind direction appeared shear between higher level and lower level,the transportation of pollutants was more limited. In rain days,acid rain was form by chemical process at a near distance.
基金Supported by the National Natural Science Foundation of China under Grant No 19974034.
文摘Influences of temperature of medium on proton conductivity in hydrogen-bonded systems exposed in an electricfield are numerically studied by the fourth-order Runge-Kutta method with our model. The results obtained show that the proton soliton is very robust against thermal perturbation and damping of medium, and is thermally stable in the temperature range T ≤ 273 K. From the simulation we find out that the mobility (or velocity) of proton conduction in ice crystal is a nonmonotonic function of temperature in the temperature range 170-273 K: i.e., it increases initially, reaches a maximum at about 191 K, subsequently decreases to a minimum at about 211 K, and then increases again. This changed rule of mobility is qualitatively consistent with its experimental data in ice in the same temperature range. This result provides an evidence for existence of solitons in the hydrogen-bonded systems.
文摘Numerical modeling and studies of the wind fields at the junction of three continents: over the complex terrains of the South-east Europe, Asia Minor, Middle East, Caucasus and over the Black, Caspian and Medi-terranean seas have been carried out for the first time. Traveling synoptic scale vortex wave generation and subsequent evolution of orographic vortices are discovered. Wind fields, spatial distribution of the coefficients of subgrid scale horizontal and vertical turbulence and the Richardson number are calculated. It is shown that the local relief, atmospheric hydrothermodynamics and air-proof tropopause facilitate the generation of β-mesoscale vortex and turbulence amplification in the vicinity of the atmospheric boundary layer and tropopause. Also turbulence parameters distribution in the troposphere has the same nature as in the stratosphere and mesosphere: turbulence coefficients, stratification of the vertical profiles of the Richardson number, thickness of the turbulent and laminar layers.
文摘This paper investigates the current-voltage characteristics (CVC) strain of p-n-junction in a strong microwave (MW) field and shows that the deformation increases the current generated in the p-n-junction. We analyze the current-voltage characteristics of p-n-junction in which three-dimensional space (I,U,e) gives more complete information than the two-dimensional.