The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different...The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.展开更多
Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity....Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.展开更多
Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic nois...Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.展开更多
Coal pyrolysis is a fundamental reaction in the thermal processing and utilization of coal.Investigating the behavior and kinetics of coal pyrolysis is crucial for optimizing,designing,and developing a composite riser...Coal pyrolysis is a fundamental reaction in the thermal processing and utilization of coal.Investigating the behavior and kinetics of coal pyrolysis is crucial for optimizing,designing,and developing a composite riser for the staged pyrolysis gasification process of pulverized coal.In this study,the non-isothermal pyrolysis behavior and kinetics of coal were examined at different heating rates(30,50,100,300,500,700,and 900℃/min)using thermogravimetry(TG)coupled with Fourier-transform infrared spectroscopy.Analysis of the TG/derivative TG(TG/DTG)curves indicated that coal pyrolysis mainly occurred between 300℃ and 700℃.Higher heating rates led to more volatiles being released from the coal,and a higher temperature was required to achieve rapid pyrolysis.Kinetic analysis showed that both the model-free methods(Friedman,Flynn-Wall-Ozawa,and Kissinger-Akahira-Sunose)and the model-based method(Coats-Redfern)effectively describe the coal pyrolysis process.The change in the Ea values between the two kinetic models was consistent throughout the pyrolysis process,and the most probable mechanism was the F2 model(secondary chemical reaction).In addition,the heating rate did not change the overall reaction order of the pyrolysis process;however,a higher heating rate resulted in a decrease in the Ea value during the initial pyrolysis stage.展开更多
Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perfora...Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°.展开更多
A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wi...A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.展开更多
The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis sh...The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.展开更多
The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
This paper is aimed at the whole Bohai Sea, as the complement and improvement of wave characteristics and extreme parameters. Wave fields were simulated in the Bohai Sea by using wave model SWAN from 1985 to 2004. The...This paper is aimed at the whole Bohai Sea, as the complement and improvement of wave characteristics and extreme parameters. Wave fields were simulated in the Bohai Sea by using wave model SWAN from 1985 to 2004. The input data based on the hindcast of high-resolution wind fields from RAMS and water level fields from POM, which have been tested and verified well. Comparisons of significant wave heights between simulation and station observations show a good agreement in general. By statistical analysis, the wave characteristics such as significant wave heights, dominant wave directions and their seasonal variations are discussed. In addition, main wave extreme parameters and directional extreme values particularly for 100-year return period are investigated.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the charact...The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the characteristic parameters of echo signals is adopted to develop a detector of range-spread targets in Gaussian noise.Firstly,the characteristic parameters of the return signals in the entire range profiles of radar are investigated.Secondly,the clustering analysis of the characteristic parameter matrix is discussed to extract the test statistic of echoes.Finally,the probabilities of detection and false alarm of the proposed detector are provided.Theoretical analysis shows that the proposed detector does not need the prior knowledge about the spatial distribution of the target scattering centers in practical scenarios,and it is simple and robust even in low signal-to-noise ratio(low-SNR)scenarios.Monte Carlo(MC)simulations reveal that the detection performance of the proposed detector outperforms the conventional detectors.展开更多
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ...In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.展开更多
The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this ...The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.展开更多
Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: ra...Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: radiation source, brightness temperature, radiation lifetime, polarized radiation, radiation mechanism, and character of superposition are affirmed.展开更多
The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, a...The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-Tc radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time-frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.展开更多
750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and step...750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.展开更多
Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh ba...Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh based on unstructured grid is used to simulate the aerodynamic characteristics of SDR and DR.Then,the effects of five key parameters,namely,the rotor disk height,the number of blades,the spread angle of the duct,the central hole radius and the ducted lip radius on the aerodynamic characteristics of the SDR are investigated.It is found that the same-sized SDR produces a larger total lift than the DR in hovering,but the lift proportion of its duct is reduced.In the forward flight,a large low-speed region is generated behind the SDR duct,and the reflux vortex in blade root above the advancing blade has the trend for inward diffusion.The rotor disk height has similar effects on SDR and DR.Increasing the number of blades can effectively increase the total lift of SDR,which also increases the lift proportion of duct.Increasing the spread angle of the duct will lead to the rotor lift coefficient decrease,reducing the central hole radius can increase the total lift,but the component lift coefficient decreases.Appropriately increasing the ducted lip radius can increase the total lift,which begins to decrease after reaching a certain value.展开更多
Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult t...Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.展开更多
Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationa...Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) satellite data and the China Land Data Assimilation System (CLDAS) meteorological forcing dataset CLDAS-V2.0 were applied for the retrieval of broadband albedo, land surface temperature (LST), radiation flux components, and turbulent heat fluxes over the Tibetan Plateau (TP). The FY-4A/AGRI and CLDAS-V2.0 data from 12 March 2018 to 30 April 2018 were first used to estimate the hourly turbulent heat fluxes over the TP. The time series data of in-situ measurements from the Tibetan Observation and Research Platform were divided into two halves-one for developing retrieval algorithms for broadband albedo and LST based on FY-4A, and the other for the cross validation. Results show the root-mean-square errors (RMSEs) of the FY-4A retrieved broadband albedo and LST were 0.0309 and 3.85 K, respectively, which verifies the applicability of the retrieval method. The RMSEs of the downwelling/upwelling shortwave radiation flux and downwelling/upwelling longwave radiation flux were 138.87/32.78 W m^(−2) and 51.55/17.92 W m^(−2), respectively, and the RMSEs of net radiation flux, sensible heat flux, and latent heat flux were 58.88 W m^(−2), 82.56 W m^(−2) and 72.46 W m^(−2), respectively. The spatial distributions and diurnal variations of LST and turbulent heat fluxes were further analyzed in detail.展开更多
基金funded by the National Natural Science Foundation of China(32360321)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2023AAC03046,2023AAC02018)the Ningxia Key Research and Development Project(2021BEG02011).
文摘The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.
文摘Based on the scattering characteristic,the comparison of RCS(radar cross-section)at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics(A&STEC)is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle)and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model,the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape,incident direction,detection position and detection frequency on echo waveform,intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.
基金the Ministry of Science and Higher Education of the Russian Federation under Grant No.FSUN-2023-0007.
文摘Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.
基金the financial support from the National Natural Science Foundation of China(Grant No.21576293 and 21576294)。
文摘Coal pyrolysis is a fundamental reaction in the thermal processing and utilization of coal.Investigating the behavior and kinetics of coal pyrolysis is crucial for optimizing,designing,and developing a composite riser for the staged pyrolysis gasification process of pulverized coal.In this study,the non-isothermal pyrolysis behavior and kinetics of coal were examined at different heating rates(30,50,100,300,500,700,and 900℃/min)using thermogravimetry(TG)coupled with Fourier-transform infrared spectroscopy.Analysis of the TG/derivative TG(TG/DTG)curves indicated that coal pyrolysis mainly occurred between 300℃ and 700℃.Higher heating rates led to more volatiles being released from the coal,and a higher temperature was required to achieve rapid pyrolysis.Kinetic analysis showed that both the model-free methods(Friedman,Flynn-Wall-Ozawa,and Kissinger-Akahira-Sunose)and the model-based method(Coats-Redfern)effectively describe the coal pyrolysis process.The change in the Ea values between the two kinetic models was consistent throughout the pyrolysis process,and the most probable mechanism was the F2 model(secondary chemical reaction).In addition,the heating rate did not change the overall reaction order of the pyrolysis process;however,a higher heating rate resulted in a decrease in the Ea value during the initial pyrolysis stage.
基金The authors gratefully acknowledge the financial support by the Marine Economy Development Foundation of Guangdong Province“Technical Support for Stimulation and Testing of Gas Hydrate Reservoirs”(GDNRC[2022]44).
文摘Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool.In this study,the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ωturbulence model.The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect.Through orthogonal experiments,the nozzle geometric parameters are optimized,and the following configuration is found accordingly:contraction angle 20°,contraction segment length 6 mm,cylindrical segment diameter 6 mm,cylindrical segment length 12 mm,spread segment length 10 mm,and spread angle 55°.
基金The National Science Foundation of China under Grant No.51378111the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-13-0128+2 种基金the Fok Ying-Tong Education Foundation for Young Teachersin the Higher Education Institutions of China under Grant No.142007the Fundamental Research Funds for the Central Universities under Grant No.2242012R30002the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering under Grant No.JSKL2011YB02
文摘A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.
文摘The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.40976005 and 40930844)
文摘This paper is aimed at the whole Bohai Sea, as the complement and improvement of wave characteristics and extreme parameters. Wave fields were simulated in the Bohai Sea by using wave model SWAN from 1985 to 2004. The input data based on the hindcast of high-resolution wind fields from RAMS and water level fields from POM, which have been tested and verified well. Comparisons of significant wave heights between simulation and station observations show a good agreement in general. By statistical analysis, the wave characteristics such as significant wave heights, dominant wave directions and their seasonal variations are discussed. In addition, main wave extreme parameters and directional extreme values particularly for 100-year return period are investigated.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
基金supported by the National Natural Science Foundation of China(61571043)the 111 Project of China(B14010)
文摘The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the characteristic parameters of echo signals is adopted to develop a detector of range-spread targets in Gaussian noise.Firstly,the characteristic parameters of the return signals in the entire range profiles of radar are investigated.Secondly,the clustering analysis of the characteristic parameter matrix is discussed to extract the test statistic of echoes.Finally,the probabilities of detection and false alarm of the proposed detector are provided.Theoretical analysis shows that the proposed detector does not need the prior knowledge about the spatial distribution of the target scattering centers in practical scenarios,and it is simple and robust even in low signal-to-noise ratio(low-SNR)scenarios.Monte Carlo(MC)simulations reveal that the detection performance of the proposed detector outperforms the conventional detectors.
基金the National Science Foundation of China(No.42074136 and U19B2008)the Major National Science and Technology Projects(No.2016ZX05027004-001 and 2016ZX05002-005-009)+1 种基金the Fundamental Research Funds for the Central Universities(No.19CX02007A)China Postdoctoral Science Foundation(No.2020M672170).
文摘In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.
文摘Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: radiation source, brightness temperature, radiation lifetime, polarized radiation, radiation mechanism, and character of superposition are affirmed.
基金supported by the National Natural Science Foundation of China (Grant No. 607710003)
文摘The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-Tc radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time-frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.
文摘750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.
基金supported by the National Defense Science and Technology Key Laboratory Fund(No.6142220180511)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh based on unstructured grid is used to simulate the aerodynamic characteristics of SDR and DR.Then,the effects of five key parameters,namely,the rotor disk height,the number of blades,the spread angle of the duct,the central hole radius and the ducted lip radius on the aerodynamic characteristics of the SDR are investigated.It is found that the same-sized SDR produces a larger total lift than the DR in hovering,but the lift proportion of its duct is reduced.In the forward flight,a large low-speed region is generated behind the SDR duct,and the reflux vortex in blade root above the advancing blade has the trend for inward diffusion.The rotor disk height has similar effects on SDR and DR.Increasing the number of blades can effectively increase the total lift of SDR,which also increases the lift proportion of duct.Increasing the spread angle of the duct will lead to the rotor lift coefficient decrease,reducing the central hole radius can increase the total lift,but the component lift coefficient decreases.Appropriately increasing the ducted lip radius can increase the total lift,which begins to decrease after reaching a certain value.
基金Supported by the National Natural Science Foundation of China (61772159)
文摘Ventilation characteristic parameters are the base of ventilation network solution; however, they are apt to be affected by operating errors, reading errors, airflow stability, and other factors, and it is difficult to obtain accurate results. In order to check the ventilation characteristic parameters of mines more accurately, the integrated method of circuit and path is adopted to overcome the drawbacks caused by the traditional path method or circuit method in the digital debugging process of ventilation system, which can improve the large local error or the inconsistency between the airflow direction and the actual situation caused by inaccuracy of the ventilation characteristic parameters or checking in the ventilation network solution. The results show that this method can effectively reduce the local error and prevent the pseudo-airflow reversal phenomenon; in addition, the solution results are consistent with the actual situation of mines, and the effect is obvious.
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Pro-gram(Grant No.2019QZKK010305)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20060101)+2 种基金the National Natural Science Foundation of China(Grant Nos.41875031,91837208,41522501 and 41275028)the Chinese Academy of Sciences Basic Frontier Sci-ence Research Program from 0 to 1 Original Innovation Project(Grant No.ZDBS-LY-DQC005-01)the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC019).
文摘Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) satellite data and the China Land Data Assimilation System (CLDAS) meteorological forcing dataset CLDAS-V2.0 were applied for the retrieval of broadband albedo, land surface temperature (LST), radiation flux components, and turbulent heat fluxes over the Tibetan Plateau (TP). The FY-4A/AGRI and CLDAS-V2.0 data from 12 March 2018 to 30 April 2018 were first used to estimate the hourly turbulent heat fluxes over the TP. The time series data of in-situ measurements from the Tibetan Observation and Research Platform were divided into two halves-one for developing retrieval algorithms for broadband albedo and LST based on FY-4A, and the other for the cross validation. Results show the root-mean-square errors (RMSEs) of the FY-4A retrieved broadband albedo and LST were 0.0309 and 3.85 K, respectively, which verifies the applicability of the retrieval method. The RMSEs of the downwelling/upwelling shortwave radiation flux and downwelling/upwelling longwave radiation flux were 138.87/32.78 W m^(−2) and 51.55/17.92 W m^(−2), respectively, and the RMSEs of net radiation flux, sensible heat flux, and latent heat flux were 58.88 W m^(−2), 82.56 W m^(−2) and 72.46 W m^(−2), respectively. The spatial distributions and diurnal variations of LST and turbulent heat fluxes were further analyzed in detail.