Based on the data from 1998 to 2005,area rainfall,flow of main hydrologic stations in Duhe River and upstream water level of the dam of Huanglongtan Reservoir in the lower reaches of Duhe River were analyzed,and the s...Based on the data from 1998 to 2005,area rainfall,flow of main hydrologic stations in Duhe River and upstream water level of the dam of Huanglongtan Reservoir in the lower reaches of Duhe River were analyzed,and the standard of flood-producing rainstorm in Duhe River was given,while temporal and spatial distribution and circulation flow situation characteristic of flood-producing rainstorm in Duhe River were studied.The results showed that the flood-producing rainstorm in Duhe River was mainly continuous intensive precipitation with the characteristic of long duration.There was most rainfall in Zhuxiquan River,Zhushanguandu River and southwest part of the middle and upper reaches of Duhe River,and next came Zhuxi River.Flood-producing rainstorm occurred in Duhe River with some favorable circulation features.For example,it was more favorable in the west Pacific subtropical high,and the convergence zone at northeast-southwest direction was formed between subtropical high and continental high pressure at 700 hPa,while southwest vortex moved eastward.Low pressure system at 850 hPa in south part of plateau developed and moved eastward to Chongqing region and formed low vortex or shear near Duhe River basin.Moreover,the characteristics of physical quantity field were analyzed,the results showed that temperature in plateau area and the south area of Duhe River basin increased obviously before rainstorm,and east pathway was the main path of cold air which affected flood-producing rainstorm in Duhe River.There was a θse intensive belt with NEE-SWW direction at 30°-40° N at 925-500 hPa,and moisture convergence was beneficial to the occurrence of rainstorm in Duhe River.展开更多
The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection wer...The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection were investigated. During the both flooding cases, although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere, the phase of the Rossby wave train is different over Eurasian continent. During flooding in the Huaihe River valley, only one single blocking anticyclone is located over Baikal Lake. In contrast, during flooding in the Yangtze River valley, there are two blocking anticyclones. One is over the Ural Mountains and the other is over Northeast Asia. In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases, but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding. Fhrthermore, abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula. However, the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific. Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation. While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south, along with abundant rainfall.展开更多
As one of the developing countries China has an arable land per capita far below the world’s average level. With a high-density population and the quick development of economy and urbanization, the Yangtze River Delt...As one of the developing countries China has an arable land per capita far below the world’s average level. With a high-density population and the quick development of economy and urbanization, the Yangtze River Delta shows the typical characteristics of land use in developed regions of China, which are: high land reclamation rate and low arable land per capita; intensive land use and high output value; and rapid increasing of construction land area and fast diminishing of arable lands. The analysis indicates that the process of the arable land changes in the Yangtze River Delta could be divided into four different change stages over the past 50 years.展开更多
The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A ...The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.展开更多
The extreme floods in the Middle/Lower Yangtze River Valley(MLYRV)during June−July 2020 caused more than 170 billion Chinese Yuan direct economic losses.Here,we examine the key features related to this extreme event a...The extreme floods in the Middle/Lower Yangtze River Valley(MLYRV)during June−July 2020 caused more than 170 billion Chinese Yuan direct economic losses.Here,we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans.Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific,which brought tropical warm moisture northward that converged over the MLYRV.In addition,despite the absence of a strong El Niño in 2019/2020 winter,the mean SST anomaly in the tropical Indian Ocean during June−July 2020 reached its highest value over the last 40 years,and 43%(57%)of it is attributed to the multi-decadal warming trend(interannual variability).Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020(albeit the magnitude of the predicted precipitation was only about one-seventh of the observed),sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods,compared to the contributions of SST anomalies in the Maritime Continent,central and eastern equatorial Pacific,and North Atlantic.Furthermore,both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods.Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.展开更多
With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results sho...With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum-mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef-fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma-jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.展开更多
Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked...Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests(i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt(i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway.展开更多
1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation pat...1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting.展开更多
NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 1...NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.展开更多
To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical...To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical data. The results indicate that: (1) in representing drought/flood information for the Yangtze River valley, the MHCI can reflect composite features of precipitation and hydrological observations; (2) compre- hensive analysis of the interannual phase difference of the precipitation and hydrological indices is important to recognize and predict annual drought/flood events along the valley; the hydrological index contributes more strongly to nonlinear and continuity features that indicate transition from long-term drought to flood conditions; (3) time series of the MHCI from 1960-2009 are very effective and sensitive in reflecting annual drought/flood characteristics, i.e. there is more rainfall or typical flooding in the valley when the MHCI is positive, and vice versa; and (4) verification of the MHCI indicates that there is significant correlation between precipitation and hydrologic responses in the valley during summer; the correlation coefficient was found to reach 0.82, exceeding the 0.001 significance level.展开更多
Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the case...Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the cases of flood prevention. In the view of geological environmental analyses of flood formation and from the synthesis of experiences gained in flood control in the past hundreds of years, sluggish draining of flood, silt sedimentation in channel and building levee blindly constitute the main cause of intractable flood for a long time in the middle reach of the Yangtze River. Draining away silt and water is the only way to stamping out flood disaster. Opening up artificial waterways for flood diversion, draining away the silt of channel into the polders, and storing the flood water are important engineering measures for the flood control and damage reduction.展开更多
Since 1990s,the spatial data warehouse technology has rapidly been developing, but due to the complexity of multi-dimensional analysis, extensive application of the spatial data warehouse technology is affected. In th...Since 1990s,the spatial data warehouse technology has rapidly been developing, but due to the complexity of multi-dimensional analysis, extensive application of the spatial data warehouse technology is affected. In the light of the characteristics of the flood control and disaster mitigation in the Yangtze river basin, it is proposed to design a scheme about the subjects and data distribution of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin, i.e., to adopt a distributed scheme. The creation and development of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin is presented .The necessity and urgency of establishing the spatial data warehouse is expounded from the viewpoint of the present situation being short of available information for the flood control and disaster mitigation in Yangtze river basin.展开更多
The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "h...The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "hanging river". According to the characteristics of the dike-break flood of the Yellow River, this paper has simulated, in six different scenarios, the dike-break flood routing by inputting the terrain data, typical historical flood data and land use data of study area to two-dimensional unsteady flow model. The results show that: firstly, the routing process of flood will occupy other rivers on the way and return to the rivers after reaching the lower reaches; secondly, in the same river reach, flood inundating area of north band is bigger than that at corresponding location of south bank under the same historical flood; thirdly, it is different in the degree of flood inundation in different regions due to different geographical locations in flood plain; fourthly, the area of mainstream where flood is deep and flow velocity is quick is relatively smaller, but the area of non-mainstream, where flood is shallow and flow velocity is slow, is relatively big; and finally, the possible influenced area of the dike-break flood is 141,948 km^2.展开更多
The middle reaches of the Yangtze River are the worst flood area of the whole basin. To study the variation regulation of the fl oods in this area over a long historical period assure improvement in prediction s of ...The middle reaches of the Yangtze River are the worst flood area of the whole basin. To study the variation regulation of the fl oods in this area over a long historical period assure improvement in prediction s of floods in the region. The trend of flood occurred frequency has close relat ionship with human activities near the river. By using statistics analysis, the fluctuations for the time series of floods since 1525 are studied. The results show that the main cycle of flood variation can be identified obviously the per iod of 2, 8 and 40 years with exceeding the level of confidence 0.03.展开更多
This paper discusses the role of geologic structures in the occurrence of floods and how to prevent flood in the middle reaches of the Yangtze River, and gives the author's suggestion that the Luoshan Qiakou be ex...This paper discusses the role of geologic structures in the occurrence of floods and how to prevent flood in the middle reaches of the Yangtze River, and gives the author's suggestion that the Luoshan Qiakou be expanded and the land reclaimed from Dongting Lake be returned to the lake in compliance with the law of geology.展开更多
With the IAP/ LASG GOALS model, the relationships between the floods in the Yangtze River valley and sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results sho...With the IAP/ LASG GOALS model, the relationships between the floods in the Yangtze River valley and sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.展开更多
[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankto...[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.展开更多
Based on the clay minerals, content analysis from 187 stations in the surface sediments, this paper dealt with the assemblages and the distributions of clay minerals in the surface sediments off the Yangtze River estu...Based on the clay minerals, content analysis from 187 stations in the surface sediments, this paper dealt with the assemblages and the distributions of clay minerals in the surface sediments off the Yangtze River estuary. The research results showed that the illite dominates the surface sediments off the Yangtze River estuary with the smectite or kaolinite the second rank and chlorite the third rank; the illite-smectite-kaolinite-chlorite-assemblage is the main type of the clay minerals assemblage in the area, with the illite-kaolinite-chlorite-smectite-type as the second rank; the source of clay mineral is mainly from the Yellow River and the Yangtze River. The Q-type cluster analysis show that sediments from both recent and ancient Yellow River were deposited mainly in the northeast part of the study area to the north of 29°30′. Substance from the Yangtze River was deposited mainly in the western and middle parts off the Yangtze River estuary.展开更多
In response to the strategic call for the " Great Protection" of the Yangtze River Economic Belt and to fulfill the important historical tasks assigned by the state to the provinces and cities of the area,th...In response to the strategic call for the " Great Protection" of the Yangtze River Economic Belt and to fulfill the important historical tasks assigned by the state to the provinces and cities of the area,the Yangtze River Economic Belt is adjusting the agricultural industry structure,optimizing the input-output ratio,and ensuring stable and sustainable agricultural production. Based on the combination of the three-stage Data Envelopment Analysis( DEA) model and cluster analysis,this study examined the Yangtze River Economic Belt from 2008 to 2018 to measure its agricultural production efficiency and to analyze its temporal and spatial characteristics. Studies showed that exogenous environmental factors significantly( P < 5%) impacted agricultural production efficiency in the Yangtze River Economic Zone,and there were temporal and spatial differences. These included:(1) after excluding environmental factors,the overall agricultural production efficiency of the Yangtze River Economic Zone had improved. Sichuan Province and Jiangsu Province were at the forefront of efficiency,whereas the agricultural production efficiency of Shanghai had declined obviously.(2) The agricultural production efficiency of the Yangtze River Economic Belt varied year by year,with fluctuating development. The middle reaches of the Yangtze River had advanced agricultural production efficiency more than the upstream and downstream regions,and the agricultural production efficiency of the individual provinces did not match their economic and social development.(3) Increases in labor,land,irrigation,and other input factors increased agriculture production efficiency,and there was no correlation between fiscal investment,per capita gross domestic product( GDP) and agricultural production efficiency,while the disaster-affected area had a significantly negative impact on agricultural production efficiency.展开更多
文摘Based on the data from 1998 to 2005,area rainfall,flow of main hydrologic stations in Duhe River and upstream water level of the dam of Huanglongtan Reservoir in the lower reaches of Duhe River were analyzed,and the standard of flood-producing rainstorm in Duhe River was given,while temporal and spatial distribution and circulation flow situation characteristic of flood-producing rainstorm in Duhe River were studied.The results showed that the flood-producing rainstorm in Duhe River was mainly continuous intensive precipitation with the characteristic of long duration.There was most rainfall in Zhuxiquan River,Zhushanguandu River and southwest part of the middle and upper reaches of Duhe River,and next came Zhuxi River.Flood-producing rainstorm occurred in Duhe River with some favorable circulation features.For example,it was more favorable in the west Pacific subtropical high,and the convergence zone at northeast-southwest direction was formed between subtropical high and continental high pressure at 700 hPa,while southwest vortex moved eastward.Low pressure system at 850 hPa in south part of plateau developed and moved eastward to Chongqing region and formed low vortex or shear near Duhe River basin.Moreover,the characteristics of physical quantity field were analyzed,the results showed that temperature in plateau area and the south area of Duhe River basin increased obviously before rainstorm,and east pathway was the main path of cold air which affected flood-producing rainstorm in Duhe River.There was a θse intensive belt with NEE-SWW direction at 30°-40° N at 925-500 hPa,and moisture convergence was beneficial to the occurrence of rainstorm in Duhe River.
基金supported by the National Natural Science Foundation of China(Grant No.40925015)the National Program on Key Basic Research Project(Grant Nos.2010CB950403and2012CB417203)
文摘The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection were investigated. During the both flooding cases, although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere, the phase of the Rossby wave train is different over Eurasian continent. During flooding in the Huaihe River valley, only one single blocking anticyclone is located over Baikal Lake. In contrast, during flooding in the Yangtze River valley, there are two blocking anticyclones. One is over the Ural Mountains and the other is over Northeast Asia. In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases, but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding. Fhrthermore, abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula. However, the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific. Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation. While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south, along with abundant rainfall.
基金the National Natural Science Foundation of China (No. 49831070) and by the KeyProgramme of the Ministry of Land and Resources
文摘As one of the developing countries China has an arable land per capita far below the world’s average level. With a high-density population and the quick development of economy and urbanization, the Yangtze River Delta shows the typical characteristics of land use in developed regions of China, which are: high land reclamation rate and low arable land per capita; intensive land use and high output value; and rapid increasing of construction land area and fast diminishing of arable lands. The analysis indicates that the process of the arable land changes in the Yangtze River Delta could be divided into four different change stages over the past 50 years.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011810) the National Natural Science Foundation of China (No. 49971039).
文摘The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.
基金This work is supported by National Natural Science Foundation of China(Grant No.42030605 and 42088101)National Key R&D Program of China(Grant No.2020YFA0608004).
文摘The extreme floods in the Middle/Lower Yangtze River Valley(MLYRV)during June−July 2020 caused more than 170 billion Chinese Yuan direct economic losses.Here,we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans.Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific,which brought tropical warm moisture northward that converged over the MLYRV.In addition,despite the absence of a strong El Niño in 2019/2020 winter,the mean SST anomaly in the tropical Indian Ocean during June−July 2020 reached its highest value over the last 40 years,and 43%(57%)of it is attributed to the multi-decadal warming trend(interannual variability).Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020(albeit the magnitude of the predicted precipitation was only about one-seventh of the observed),sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods,compared to the contributions of SST anomalies in the Maritime Continent,central and eastern equatorial Pacific,and North Atlantic.Furthermore,both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods.Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.
基金the"National Key Programme for Developing Basic Sciences"--Research on the Formation Mechanism and Prediction Theory of Severe Climate Disasters in China(G1998040900)the National Natrual Science Foundation of China under Grant No.40135020the Project ZKCX2-SW-2t0
文摘With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum-mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef-fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma-jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.
基金Project(2018YFB1600100) supported by the National Key Research and Development Project of ChinaProjects(51778346, 51508310) supported by the National Natural Science Foundation of ChinaProject(2019GSF111007) supported by Key Research and Development Project of Shandong Province, China。
文摘Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests(i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt(i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway.
基金Research on Floods-Causing Heavy Rains in the Valley of Huaihe River in 2003, a projectfrom the National Meteorological Center
文摘1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting.
基金National Natural Science Foundation of China(41275080)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306022)Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(PAEKL-2010-C3)
文摘NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR.
基金supported by project GYHY201106050the National"973"Program of China under Grant No.2011CB403404,and Project No.2009Y002
文摘To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical data. The results indicate that: (1) in representing drought/flood information for the Yangtze River valley, the MHCI can reflect composite features of precipitation and hydrological observations; (2) compre- hensive analysis of the interannual phase difference of the precipitation and hydrological indices is important to recognize and predict annual drought/flood events along the valley; the hydrological index contributes more strongly to nonlinear and continuity features that indicate transition from long-term drought to flood conditions; (3) time series of the MHCI from 1960-2009 are very effective and sensitive in reflecting annual drought/flood characteristics, i.e. there is more rainfall or typical flooding in the valley when the MHCI is positive, and vice versa; and (4) verification of the MHCI indicates that there is significant correlation between precipitation and hydrologic responses in the valley during summer; the correlation coefficient was found to reach 0.82, exceeding the 0.001 significance level.
基金The research is supported by the National Natural Science F ounda-tion of China( No.49972 0 5 7) and the China Geological Surv
文摘Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the cases of flood prevention. In the view of geological environmental analyses of flood formation and from the synthesis of experiences gained in flood control in the past hundreds of years, sluggish draining of flood, silt sedimentation in channel and building levee blindly constitute the main cause of intractable flood for a long time in the middle reach of the Yangtze River. Draining away silt and water is the only way to stamping out flood disaster. Opening up artificial waterways for flood diversion, draining away the silt of channel into the polders, and storing the flood water are important engineering measures for the flood control and damage reduction.
文摘Since 1990s,the spatial data warehouse technology has rapidly been developing, but due to the complexity of multi-dimensional analysis, extensive application of the spatial data warehouse technology is affected. In the light of the characteristics of the flood control and disaster mitigation in the Yangtze river basin, it is proposed to design a scheme about the subjects and data distribution of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin, i.e., to adopt a distributed scheme. The creation and development of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin is presented .The necessity and urgency of establishing the spatial data warehouse is expounded from the viewpoint of the present situation being short of available information for the flood control and disaster mitigation in Yangtze river basin.
基金The State Scientific Research Plan, No.96-920-09-01
文摘The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "hanging river". According to the characteristics of the dike-break flood of the Yellow River, this paper has simulated, in six different scenarios, the dike-break flood routing by inputting the terrain data, typical historical flood data and land use data of study area to two-dimensional unsteady flow model. The results show that: firstly, the routing process of flood will occupy other rivers on the way and return to the rivers after reaching the lower reaches; secondly, in the same river reach, flood inundating area of north band is bigger than that at corresponding location of south bank under the same historical flood; thirdly, it is different in the degree of flood inundation in different regions due to different geographical locations in flood plain; fourthly, the area of mainstream where flood is deep and flow velocity is quick is relatively smaller, but the area of non-mainstream, where flood is shallow and flow velocity is slow, is relatively big; and finally, the possible influenced area of the dike-break flood is 141,948 km^2.
文摘The middle reaches of the Yangtze River are the worst flood area of the whole basin. To study the variation regulation of the fl oods in this area over a long historical period assure improvement in prediction s of floods in the region. The trend of flood occurred frequency has close relat ionship with human activities near the river. By using statistics analysis, the fluctuations for the time series of floods since 1525 are studied. The results show that the main cycle of flood variation can be identified obviously the per iod of 2, 8 and 40 years with exceeding the level of confidence 0.03.
文摘This paper discusses the role of geologic structures in the occurrence of floods and how to prevent flood in the middle reaches of the Yangtze River, and gives the author's suggestion that the Luoshan Qiakou be expanded and the land reclaimed from Dongting Lake be returned to the lake in compliance with the law of geology.
文摘With the IAP/ LASG GOALS model, the relationships between the floods in the Yangtze River valley and sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons.
基金Supported by Fishery Germplasm Conservation Project of the Ministry of Agriculture(MOA)(No.6115048)State Specific Project on Fundamental Scientific Research Financed to Public Institutes(No.2009JBFB10)~~
文摘[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.
文摘Based on the clay minerals, content analysis from 187 stations in the surface sediments, this paper dealt with the assemblages and the distributions of clay minerals in the surface sediments off the Yangtze River estuary. The research results showed that the illite dominates the surface sediments off the Yangtze River estuary with the smectite or kaolinite the second rank and chlorite the third rank; the illite-smectite-kaolinite-chlorite-assemblage is the main type of the clay minerals assemblage in the area, with the illite-kaolinite-chlorite-smectite-type as the second rank; the source of clay mineral is mainly from the Yellow River and the Yangtze River. The Q-type cluster analysis show that sediments from both recent and ancient Yellow River were deposited mainly in the northeast part of the study area to the north of 29°30′. Substance from the Yangtze River was deposited mainly in the western and middle parts off the Yangtze River estuary.
基金Supported by the Strategic Leading Science and Technology Project (Class A)of Chinese Academy of Sciences (XDA23020101)the National Natural Science Foundation of China (41801129)。
文摘In response to the strategic call for the " Great Protection" of the Yangtze River Economic Belt and to fulfill the important historical tasks assigned by the state to the provinces and cities of the area,the Yangtze River Economic Belt is adjusting the agricultural industry structure,optimizing the input-output ratio,and ensuring stable and sustainable agricultural production. Based on the combination of the three-stage Data Envelopment Analysis( DEA) model and cluster analysis,this study examined the Yangtze River Economic Belt from 2008 to 2018 to measure its agricultural production efficiency and to analyze its temporal and spatial characteristics. Studies showed that exogenous environmental factors significantly( P < 5%) impacted agricultural production efficiency in the Yangtze River Economic Zone,and there were temporal and spatial differences. These included:(1) after excluding environmental factors,the overall agricultural production efficiency of the Yangtze River Economic Zone had improved. Sichuan Province and Jiangsu Province were at the forefront of efficiency,whereas the agricultural production efficiency of Shanghai had declined obviously.(2) The agricultural production efficiency of the Yangtze River Economic Belt varied year by year,with fluctuating development. The middle reaches of the Yangtze River had advanced agricultural production efficiency more than the upstream and downstream regions,and the agricultural production efficiency of the individual provinces did not match their economic and social development.(3) Increases in labor,land,irrigation,and other input factors increased agriculture production efficiency,and there was no correlation between fiscal investment,per capita gross domestic product( GDP) and agricultural production efficiency,while the disaster-affected area had a significantly negative impact on agricultural production efficiency.