The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not...A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not only are the accelerations,dynamic coefficients,dynamic stresses of the invert and foundation soils emphatically analyzed,their relationship with the velocity of the train are discussed in detail.Through laboratory testing,the attenuation of vibration propagating from up the rails is obtained and the calculation formula of the speed influence coefficient of the tunnel invert is preliminarily established.The depth of the foundation soils influenced by vibration is also determined in this study.It is shown that the responses of the tunnel invert and foundation soils to vibration are slightly increased with the velocity of the train;circumferential stresses in the bottom of the invert are tensile stresses and maximum stresses appear under the foot of the rails;the dynamic soil pressures of the foundation decrease quickly with the distance away from the tunnel invert and an exponential relationship exists between them.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
The challenges of severe Doppler effects in high-speed railway are considered. By building a cooperative antenna system; an algorithm of joint channel estimation and Doppler frequency offset (DFO) estimation is prop...The challenges of severe Doppler effects in high-speed railway are considered. By building a cooperative antenna system; an algorithm of joint channel estimation and Doppler frequency offset (DFO) estimation is proposed based on Ricean channel model. First, a maximum likelihood estimation (MLE) algorithm for DFO is designed, show- ing that the Doppler estimation can be obtained by estimating moving velocity of the train and the path loss with the exploitation of pilots that are placed inside the frame. Then a joint detection algorithm for the receiver is proposed to exploit multi-antenna diversity gains. Last, the theoretical Crammer Rao bound (CRB) for joint channel estimation and DFO estimation is derived. The steady performance of the system is confirmed by numerical simulations. In particular, when the Ricean fading channel parameter equals 5 and the velocities of train are 100 m/s and 150 m/s, the estimation variances of DFO are very close to the theoretical results obtained by using CRB. Meanwhile, the corresponding sig- nal to noise ratio loss is less than 1.5 dB when the bit error rate is 10-5 for 16QAM signals.展开更多
Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in sys...Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.展开更多
Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenge...Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel,taking the passenger compartment window glass of the CRH3 high speed train onWuhan-Guangzhou High Speed Railway as the research object,this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit,the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km$h-1.Findings-The results show that while crossing the tunnel,the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures,which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain.The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa,and the maximum value occurs at the corresponding time of crossing the tunnel groups.The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects,while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel.The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time.The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure.Thus,the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.Originality/value-The research results provide data support for the analysis of mechanical characteristics,damage mechanism,strength design and structural optimization of high speed train glass.展开更多
Resonance drilling is a new technology, still at the laboratory stage. It has great potential to improve rock fragmentation efficiency. We analyzed the amplitude-frequency characteristics of steady- state mechanical v...Resonance drilling is a new technology, still at the laboratory stage. It has great potential to improve rock fragmentation efficiency. We analyzed the amplitude-frequency characteristics of steady- state mechanical vibration excited by harmonic vibration in rocks and an apparatus was built to achieve high fi'equency vibration of rock. The influence of rock drillability, rotary speed, excitation frequency, and other parameters on the rate of penetration (ROP) in resonance drilling was analyzed. The results show that the rock drillability decreased with an increase in excitation frequency. When drilling with a large size drill bit, the ROP increased with excitation frequency. The ROP reached a maximum value at the resonant frequency of the rock. Tile ROP of the bit increased linearly with rotary speed when no vibration was applied on the rock and increased approximately exponentially when harmonic vibration was applied. In addition, the resonant frequency of the rock was changing during the process of rock fi'agmentation, so in order to achieve tile desired resonance of the rock, it is necessary to detemaine an appropriate hamlonic vibration excitation frequency.展开更多
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- pu...To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- putational fluid dynamics, and eight cases with pantographs fixed on different positions and in different operational orientations were considered. The pantographs were fixed on the front or the rear end of the first middle car or fixed on the front or the rear end of the last middle car. The external flow fields of the high-speed trains were numeri- cally simulated using the software STAR-CCM+. The results show that the pantograph fixing position has little effect on the aerodynamic drag force of the head car and has a large effect on the aerodynamic drag force of the tail car. The influences of the pantograph fixing position on the aerodynamic lift forces of the head car, tail car and pan- tographs are obvious. Among the eight cases, considering the total aerodynamic drag force of the train and the aerodynamic lift force of the lifted pantograph, when the pantographs are fixed on the rear end of the last middle car and the lifted pantograph is in the knuckle-upstream ori- entation, the aerodynamic performance of the high-speed train is the best.展开更多
For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalanc...For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.展开更多
To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at differen...To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.展开更多
According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high sp...According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high speed on-off valve by the output pressure signal of the a-type half bridge is proposed. Having analyzed the factors related to the dynamic characteristics of an a-type half bridge, a rule for designing the outlet chamber's volume is worked out. According to the rule, a test stand is built to test the self-developed high-speed on-off valve. From the test results, it can be seen that with the outlet chamber's volume controlled by the rule the rise time of the pressure signals driven by signals with different frequencies changes very little. The test results conform to the simulation results, which nroves the correctness of the method.展开更多
On a self-made super-high shear strain rate rheometer, the rheological characteristics and apparent viscosity curves of a high-speed bearing grease were obtained under different working conditions. A new grease rheolo...On a self-made super-high shear strain rate rheometer, the rheological characteristics and apparent viscosity curves of a high-speed bearing grease were obtained under different working conditions. A new grease rheological model suited to a shear strain rate range of 0—3.5×10~6s^(-1) was presented. The results showed that the shear stress increased linearly at first and then increased nonlinearly with the increase in shear strain rate up to 1.5×10~6s^(-1), and finally the shear stress decreased slightly with the successive increase in shear strain rate. The shear stress increased with a decreasing rolling speed and an increasing contact pressure. The apparent viscosity decreased rapidly with the increase of shear strain rate at beginning and could approach the viscosity of the base oil if the shear strain rate surpassed 1.5×10~6s^(-1). The fits between the test data and the predicted values by the new model were fairly good.展开更多
Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study o...Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study of black-hole mergers. We suggest that high-frequency relic gravitational wave (HFRGW) detectors be developed, especially the Li-Baker HFRGW detector, in the gigahertz and higher frequency range. We believe collecting cosmological, primordial observational data especially generated during the first few seconds after the beginning of our Universe is extremely important. One motivation for this paper is, therefore, that we are confident that observation of relic gravitational waves will provide vital information about the birth of our Universe and its early dynamical evolution. Other astrophysical applications of HFRGW detectors involve the entropy growth of the early Universe, an ability to study alternatives to inflation and to provide clues about the symmetries underlying new physics at the highest energies. A working hypothesis or theory, based upon the rollout of our Universe from infinitesimal Planck Length and Planck Time is presented. This theory involves the rapid motion of time and matter during that early time having frequencies on the order of trillions of cycles per second or more. Several alternative HFRGW detectors are described and the proposed Li-Baker HFRGW detector, which is theoretically sensitive to GW amplitudes, A, as small as 10-32, is discussed in detail. Such sensitivity may provide a means for verifying or falsifying the rollout of our Universe working hypothesis. Essentially a combination of theory and experimentation is presented. It is recommended that plans and detailed specifications for the Li-Baker HFRGW detector be prepared in order to expedite its fabrication.展开更多
The research and development of ultra high speed protective relay of transmission line has got great interest and attention of protective relay engineer over the world. Several versions and schemes of ultra high speed...The research and development of ultra high speed protective relay of transmission line has got great interest and attention of protective relay engineer over the world. Several versions and schemes of ultra high speed relay have been studied and designed in recent twenty years. But only a few of them have got actual apiication in the power system. The relay based on the deviation of power frequency component (DPFC) can get very high reliability with ultra high speed so it has got wide application in Chinese power system. Thousands relay sets have been applied and its operation experience verifies their excellent performance. This paper summarizes the course of the development of the uItra high speed protective relay and compares the merits and defects of the main schemes which have been developed. The principle and successful pratice of the ultra high speed protection based on DPFC reIay are introduced.展开更多
In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dyn...In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism.展开更多
Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the ...Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.展开更多
A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a ...A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
基金the National Program on Key Basic Research Project of China(973 Program)under Grant No.2011CB013802the National Basic Research Program of China under Grant No.51108461 and No.51308270
文摘A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not only are the accelerations,dynamic coefficients,dynamic stresses of the invert and foundation soils emphatically analyzed,their relationship with the velocity of the train are discussed in detail.Through laboratory testing,the attenuation of vibration propagating from up the rails is obtained and the calculation formula of the speed influence coefficient of the tunnel invert is preliminarily established.The depth of the foundation soils influenced by vibration is also determined in this study.It is shown that the responses of the tunnel invert and foundation soils to vibration are slightly increased with the velocity of the train;circumferential stresses in the bottom of the invert are tensile stresses and maximum stresses appear under the foot of the rails;the dynamic soil pressures of the foundation decrease quickly with the distance away from the tunnel invert and an exponential relationship exists between them.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.
基金supported by the China Major State Basic Research Development Program(973 Program,No.2012CB316100)National Natural Science Foundation of China(No.61171064)+2 种基金the China National Science and Technology Major Project(No.2010ZX03003-003)NSFC(No.61021001)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2011D13)
文摘The challenges of severe Doppler effects in high-speed railway are considered. By building a cooperative antenna system; an algorithm of joint channel estimation and Doppler frequency offset (DFO) estimation is proposed based on Ricean channel model. First, a maximum likelihood estimation (MLE) algorithm for DFO is designed, show- ing that the Doppler estimation can be obtained by estimating moving velocity of the train and the path loss with the exploitation of pilots that are placed inside the frame. Then a joint detection algorithm for the receiver is proposed to exploit multi-antenna diversity gains. Last, the theoretical Crammer Rao bound (CRB) for joint channel estimation and DFO estimation is derived. The steady performance of the system is confirmed by numerical simulations. In particular, when the Ricean fading channel parameter equals 5 and the velocities of train are 100 m/s and 150 m/s, the estimation variances of DFO are very close to the theoretical results obtained by using CRB. Meanwhile, the corresponding sig- nal to noise ratio loss is less than 1.5 dB when the bit error rate is 10-5 for 16QAM signals.
文摘Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072356 and 52032011)the 2019 Zaozhuang High-level Talents Project (Grant No.ZZYF-01).
文摘Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel,taking the passenger compartment window glass of the CRH3 high speed train onWuhan-Guangzhou High Speed Railway as the research object,this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit,the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km$h-1.Findings-The results show that while crossing the tunnel,the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures,which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain.The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa,and the maximum value occurs at the corresponding time of crossing the tunnel groups.The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects,while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel.The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time.The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure.Thus,the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.Originality/value-The research results provide data support for the analysis of mechanical characteristics,damage mechanism,strength design and structural optimization of high speed train glass.
基金funded by National Natural Science Foundation of China(Grant No.51274072)Youth Science Foundation of Heilongjiang Province(Grant No.QC2012C022)
文摘Resonance drilling is a new technology, still at the laboratory stage. It has great potential to improve rock fragmentation efficiency. We analyzed the amplitude-frequency characteristics of steady- state mechanical vibration excited by harmonic vibration in rocks and an apparatus was built to achieve high fi'equency vibration of rock. The influence of rock drillability, rotary speed, excitation frequency, and other parameters on the rate of penetration (ROP) in resonance drilling was analyzed. The results show that the rock drillability decreased with an increase in excitation frequency. When drilling with a large size drill bit, the ROP increased with excitation frequency. The ROP reached a maximum value at the resonant frequency of the rock. Tile ROP of the bit increased linearly with rotary speed when no vibration was applied on the rock and increased approximately exponentially when harmonic vibration was applied. In addition, the resonant frequency of the rock was changing during the process of rock fi'agmentation, so in order to achieve tile desired resonance of the rock, it is necessary to detemaine an appropriate hamlonic vibration excitation frequency.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
基金supported by the High-Speed Railway Basic Research Fund Key Project of China(Grant No.U1234208)the National Natural Science Foundation of China(Grant Nos.51475394 and 51605397)
文摘To study the influence of the pantograph fixing position on aerodynamic characteristics of high-speed trains, the aerodynamic models of high-speed trains with eight cars were established based on the theory of com- putational fluid dynamics, and eight cases with pantographs fixed on different positions and in different operational orientations were considered. The pantographs were fixed on the front or the rear end of the first middle car or fixed on the front or the rear end of the last middle car. The external flow fields of the high-speed trains were numeri- cally simulated using the software STAR-CCM+. The results show that the pantograph fixing position has little effect on the aerodynamic drag force of the head car and has a large effect on the aerodynamic drag force of the tail car. The influences of the pantograph fixing position on the aerodynamic lift forces of the head car, tail car and pan- tographs are obvious. Among the eight cases, considering the total aerodynamic drag force of the train and the aerodynamic lift force of the lifted pantograph, when the pantographs are fixed on the rear end of the last middle car and the lifted pantograph is in the knuckle-upstream ori- entation, the aerodynamic performance of the high-speed train is the best.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575176,51375162)Scientific Research Foundation of Hunan Provincial Education Department of China(Grant No.15B085)Postgraduate Innovation Foundation of Hunan University of Science and Technology,China(Grant No.S140020)
文摘For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.
基金Key Subject for Science Research and De-velopment Plan of Railway Ministry (No.2006G004-B)
文摘To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.
文摘According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high speed on-off valve by the output pressure signal of the a-type half bridge is proposed. Having analyzed the factors related to the dynamic characteristics of an a-type half bridge, a rule for designing the outlet chamber's volume is worked out. According to the rule, a test stand is built to test the self-developed high-speed on-off valve. From the test results, it can be seen that with the outlet chamber's volume controlled by the rule the rise time of the pressure signals driven by signals with different frequencies changes very little. The test results conform to the simulation results, which nroves the correctness of the method.
基金financially supported by the National Natural Science Foundation of China (No. 51475143)the Tianjin Natural Science Foundation (No.16JCYBJC18900)
文摘On a self-made super-high shear strain rate rheometer, the rheological characteristics and apparent viscosity curves of a high-speed bearing grease were obtained under different working conditions. A new grease rheological model suited to a shear strain rate range of 0—3.5×10~6s^(-1) was presented. The results showed that the shear stress increased linearly at first and then increased nonlinearly with the increase in shear strain rate up to 1.5×10~6s^(-1), and finally the shear stress decreased slightly with the successive increase in shear strain rate. The shear stress increased with a decreasing rolling speed and an increasing contact pressure. The apparent viscosity decreased rapidly with the increase of shear strain rate at beginning and could approach the viscosity of the base oil if the shear strain rate surpassed 1.5×10~6s^(-1). The fits between the test data and the predicted values by the new model were fairly good.
文摘Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study of black-hole mergers. We suggest that high-frequency relic gravitational wave (HFRGW) detectors be developed, especially the Li-Baker HFRGW detector, in the gigahertz and higher frequency range. We believe collecting cosmological, primordial observational data especially generated during the first few seconds after the beginning of our Universe is extremely important. One motivation for this paper is, therefore, that we are confident that observation of relic gravitational waves will provide vital information about the birth of our Universe and its early dynamical evolution. Other astrophysical applications of HFRGW detectors involve the entropy growth of the early Universe, an ability to study alternatives to inflation and to provide clues about the symmetries underlying new physics at the highest energies. A working hypothesis or theory, based upon the rollout of our Universe from infinitesimal Planck Length and Planck Time is presented. This theory involves the rapid motion of time and matter during that early time having frequencies on the order of trillions of cycles per second or more. Several alternative HFRGW detectors are described and the proposed Li-Baker HFRGW detector, which is theoretically sensitive to GW amplitudes, A, as small as 10-32, is discussed in detail. Such sensitivity may provide a means for verifying or falsifying the rollout of our Universe working hypothesis. Essentially a combination of theory and experimentation is presented. It is recommended that plans and detailed specifications for the Li-Baker HFRGW detector be prepared in order to expedite its fabrication.
文摘The research and development of ultra high speed protective relay of transmission line has got great interest and attention of protective relay engineer over the world. Several versions and schemes of ultra high speed relay have been studied and designed in recent twenty years. But only a few of them have got actual apiication in the power system. The relay based on the deviation of power frequency component (DPFC) can get very high reliability with ultra high speed so it has got wide application in Chinese power system. Thousands relay sets have been applied and its operation experience verifies their excellent performance. This paper summarizes the course of the development of the uItra high speed protective relay and compares the merits and defects of the main schemes which have been developed. The principle and successful pratice of the ultra high speed protection based on DPFC reIay are introduced.
基金Project(51005138) supported by the National Natural Science Foundation of ChinaProject(BS2012ZZ008) supported by Shandong Young Scientists Award Fund,China+2 种基金Project(J09LD54) supported by the Natural Science Foundation of Shandong Education Department of ChinaProject(2011KYJQ102) supported by the Science Foundation of Shandong University of Science and Technology,ChinaProject(HGDML-1104) supported by Jiangsu Key Laboratory of Digital Manufacturing Technology,China
文摘In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism.
文摘Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.
文摘A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.