Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy ex...Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy exhibits an excellent creep resistance at 700 ℃ and below. When the creep temperature rises to 750 ℃, the creep resistance falls drastically due to the failure of phase transformation strengthening and the precipitation of a large amount of δ phase and σ phase at the grain boundary. The special temperature-sensitive characteristics of Inconel 625 alloy play a very important role in its fracture. When the strain rate is 8.33×10^-3s^-1, the strength of the specimen is higher than that of other parameters attributed to the effect of phase transformation strengthening. With the increase of Ni3(Al, Ti), the phase transformation strengthening inhibits thickening of the stacking faults into twins and improves the overall mechanical properties of the alloy. With the increase of the aging time, the granular Cr-rich M23C6 carbides continue to precipitate at the grain boundary, which hinders the movement of the dislocations and obviously increases the strength of the samples. Especially, the yield strength increases several times.展开更多
We prove that the density function of the gradient of a sufficiently smooth function , obtained via a random variable transformation of a uniformly distributed random variable, is increasingly closely approximated by ...We prove that the density function of the gradient of a sufficiently smooth function , obtained via a random variable transformation of a uniformly distributed random variable, is increasingly closely approximated by the normalized power spectrum of ?as the free parameter . The frequencies act as gradient histogram bins. The result is shown using the stationary phase approximation and standard integration techniques and requires proper ordering of limits. We highlight a relationship with the well-known characteristic function approach to density estimation, and detail why our result is distinct from this method. Our framework for computing the joint density of gradients is extremely fast and straightforward to implement requiring a single Fourier transform operation without explicitly computing the gradients.展开更多
Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of whic...Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of which viscosity sharply increases when temperature is lowered than temperature of critical viscosity(TCV).The fluctuation in temperature near the TCVcan cause an accumulation of slag inside the gasifier.In order to prevent slag blockage,it is necessary to adjust the ash composition by additive to modify the flow property of coal rich in calcium and iron.Main components of coal gangue are Al_(2)O_(3) and SiO_(2),which is a potential additive to modify the ash flow properties of these coals.In this work,we investigated the ash flow properties of a typical coal rich in calcium and iron by adding coal gangue with different SiO_(2)/Al_(2)O_(3)ratio.The results showed that the ash fusion temperatures(AFTs)firstly decreased,and then increased with increasing amount of coal gangue addition.Chemical composition of coal ash rich in calcium and iron moved from gehlenite primary phase to anorthite,quartz and corundum primary phases.The slags with coal gangue addition behaved as a glassy slag,of which the viscosity gradually increased as temperature decreased.Besides,a high SiO_(2)/Al_(2)O_(3)ratio of coal gangue was beneficial to modify the slag viscosity behavior.Addition of coal gangue with a high SiO_(2)/Al_(2)O_(3)ratio impeded formation of crystalline phases during cooling.This work demonstrated that coal gangue addition was an effective way to improve the ash flow properties of the coal rich in calcium and iron for the entrained flow gasifier.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51664041,51561021,and 51665032)in part by Longyuan Youth Innovation and Entrepreneurship ProjectsBRICS STI Framework Programme
文摘Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy exhibits an excellent creep resistance at 700 ℃ and below. When the creep temperature rises to 750 ℃, the creep resistance falls drastically due to the failure of phase transformation strengthening and the precipitation of a large amount of δ phase and σ phase at the grain boundary. The special temperature-sensitive characteristics of Inconel 625 alloy play a very important role in its fracture. When the strain rate is 8.33×10^-3s^-1, the strength of the specimen is higher than that of other parameters attributed to the effect of phase transformation strengthening. With the increase of Ni3(Al, Ti), the phase transformation strengthening inhibits thickening of the stacking faults into twins and improves the overall mechanical properties of the alloy. With the increase of the aging time, the granular Cr-rich M23C6 carbides continue to precipitate at the grain boundary, which hinders the movement of the dislocations and obviously increases the strength of the samples. Especially, the yield strength increases several times.
文摘We prove that the density function of the gradient of a sufficiently smooth function , obtained via a random variable transformation of a uniformly distributed random variable, is increasingly closely approximated by the normalized power spectrum of ?as the free parameter . The frequencies act as gradient histogram bins. The result is shown using the stationary phase approximation and standard integration techniques and requires proper ordering of limits. We highlight a relationship with the well-known characteristic function approach to density estimation, and detail why our result is distinct from this method. Our framework for computing the joint density of gradients is extremely fast and straightforward to implement requiring a single Fourier transform operation without explicitly computing the gradients.
基金supported by the Fundamental Research Funds for the Central Universities(2017CXNL04)。
文摘Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of which viscosity sharply increases when temperature is lowered than temperature of critical viscosity(TCV).The fluctuation in temperature near the TCVcan cause an accumulation of slag inside the gasifier.In order to prevent slag blockage,it is necessary to adjust the ash composition by additive to modify the flow property of coal rich in calcium and iron.Main components of coal gangue are Al_(2)O_(3) and SiO_(2),which is a potential additive to modify the ash flow properties of these coals.In this work,we investigated the ash flow properties of a typical coal rich in calcium and iron by adding coal gangue with different SiO_(2)/Al_(2)O_(3)ratio.The results showed that the ash fusion temperatures(AFTs)firstly decreased,and then increased with increasing amount of coal gangue addition.Chemical composition of coal ash rich in calcium and iron moved from gehlenite primary phase to anorthite,quartz and corundum primary phases.The slags with coal gangue addition behaved as a glassy slag,of which the viscosity gradually increased as temperature decreased.Besides,a high SiO_(2)/Al_(2)O_(3)ratio of coal gangue was beneficial to modify the slag viscosity behavior.Addition of coal gangue with a high SiO_(2)/Al_(2)O_(3)ratio impeded formation of crystalline phases during cooling.This work demonstrated that coal gangue addition was an effective way to improve the ash flow properties of the coal rich in calcium and iron for the entrained flow gasifier.