This project defined changes in soil properties after construction of subsurface tile drainage. We compared the physical and chemical properties of soil samples taken before construction of drainage and new soil sampl...This project defined changes in soil properties after construction of subsurface tile drainage. We compared the physical and chemical properties of soil samples taken before construction of drainage and new soil samples taken from identical sites at present. The research was made for Stagnic Cambisols (Dystric) and Haplic Stagnosols. The pH value and saturation of the topsoil sorption complex of both soil types statistically increased and simultaneously the cation exchange capacity (CEC) decreased. In the topsoil of Stagnosols, the effective cation exchange capacity and porosity also decreased, and at the same time the particle density and bulk density increased. Soil organic matter and minimum air capacity increased in the topsoil of Cambisols. Porosity and minimum air capacity increased in both soils in the subsoil. In the Cambisol subsoil, the CEC and bulk density decreased. We can assume that after drainage Stagnosols are susceptible to soil compaction, especially in topsoil.展开更多
The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security ...The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security of this region.In this paper,based on the daily observation data of 124 meteorological stations in study area from 1961 to 2020,seasonal and monthly wind erosion climate factor(C)in spring(March to May)were calculated by using the method proposed by the Food and Agriculture Organization of the United Nations(FAO),the wind erosion characterization in spring were systematically analyzed based on C by various statistical analysis methods.The results showed that in the past 60 years,spring wind erosion climate factor(CSp)and monthly C of the whole region and each province(region)all showed highly significant decreasing trend,but they began to show rebounded trend in the middle or late 2000s.CSp of the study area showed a significant upward trend since 2008 with an increase of 4.59(10a)^(-1).The main contributors to this upward trend are the changes of C in March and in April.For the four provinces(regions),CSp in Heilongjiang,Jilin,Liaoning and eastern Inner Mongolia all showed rebounded since 2008,2011,2008 and 2009,respectively.The rebounded trend of CSp in eastern Inner Mongolia was the most obvious with a tendency rate of 11.27(10a)^(-1),and its mutation occurred after 1984.The rebound trend of CSp in Heilongjiang Province takes the second place,with a trend rate of 4.72(10a)^(-1),but there’s no obvious time mutation characteristics.The spatial characteristics of CSpand monthly C are similar,showing decreasing characteristics centered on the typical black soil belt of Northeast China.Compared with 1961-1990,in the period from 1991 to 2020,the proportion of high value areas(CSp>35,monthly C>10)has decreased to varying degrees,while the proportion of low value areas(CSp≤10,monthly C≤4)has increased.The trends of seasonal and monthly C in 82.2%~87.7%of the stations show significant decreases at 95%confidence level.CSp is closely related to wind speed at 2m height,temperature difference,minimum temperature and precipitation in the same period,of which the correlation between CSp and wind speed is the strongest,indicating that the main control factor for CSp in the study area is wind speed,but the impact of the change of temperature and precipitation on CSp cannot be ignored.展开更多
Soil physicochemical parameters are the physical and chemical characteristics of soil such as pH, bulk density, organic carbon, nitrogen content, and nutrient levels at different soil depths. These parameters vary fro...Soil physicochemical parameters are the physical and chemical characteristics of soil such as pH, bulk density, organic carbon, nitrogen content, and nutrient levels at different soil depths. These parameters vary from one vegetation to the other and from one soil to the other. The study assessed the variations in soil physicochemical parameters of the natural forest and plantations in Agu Eke (Eke bush) in Etti village, Nanka and Umunnebo village, Ufuma both located in Orumba North Local Government Area, Anambra State. The experimental research design and stratified random sampling methods were used for the study and a total of 12 soil samples were collected at 30 cm depth from the selected locations of natural forest, cashew and palm plantations. The samples were analyzed using laboratory Varian AA240 Atomic Absorption Spectrophotometer, after which the result was subjected to statistical analysis—Analysis of Variance (ANOVA). The study found that there was no significant difference (variation) between the moisture contents of natural forests and the plantations;that is, the moisture contents were the same. It was also found that there was no significant variation between the bulk densities of the natural forest, oil plantation, and cashew plantation, meaning that the bulk densities were significantly the same. However, there were significant variations in nitrogen, potassium and phosphates, with p-values: sig = .000 < .05, sig = .010 < .05 and sig = .000 < .05, respectively. That is, the nitrogen and phosphate contents of the natural forest significantly vary more than those of the oil palm and cashew plantations, which probably means that by reducing natural forest to plantation, the nitrogen and phosphate contents of the natural forest reduced from what it used to be when the lands were mere forests. This shows that plantations do not have the same function of maintaining or improving soil quality as natural forests. The study recommended adopting a sustainable plantation agricultural system, such as using diverse nutrient sources (manure and compost), in order to maintain the desired soil quality.展开更多
基金supported by project QJ1520307 entitled“Sustainable Forms of Management in an Anthropogenically Burdened Region”financial support from state budget resources through the KUS program,Ministry of Agriculture of the Czech Republic
文摘This project defined changes in soil properties after construction of subsurface tile drainage. We compared the physical and chemical properties of soil samples taken before construction of drainage and new soil samples taken from identical sites at present. The research was made for Stagnic Cambisols (Dystric) and Haplic Stagnosols. The pH value and saturation of the topsoil sorption complex of both soil types statistically increased and simultaneously the cation exchange capacity (CEC) decreased. In the topsoil of Stagnosols, the effective cation exchange capacity and porosity also decreased, and at the same time the particle density and bulk density increased. Soil organic matter and minimum air capacity increased in the topsoil of Cambisols. Porosity and minimum air capacity increased in both soils in the subsoil. In the Cambisol subsoil, the CEC and bulk density decreased. We can assume that after drainage Stagnosols are susceptible to soil compaction, especially in topsoil.
基金supported by the Open Research Fund of Innovation and Open Laboratory of Eco-meteorology in Northeast China,China Meteorological Administration(stqx2019zd02)Heilongjiang Meteorological Science and Technology Research Project(HQGG202004)Heilongjiang Provincial Natural Science Foundation of China(LH2020C105)。
文摘The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security of this region.In this paper,based on the daily observation data of 124 meteorological stations in study area from 1961 to 2020,seasonal and monthly wind erosion climate factor(C)in spring(March to May)were calculated by using the method proposed by the Food and Agriculture Organization of the United Nations(FAO),the wind erosion characterization in spring were systematically analyzed based on C by various statistical analysis methods.The results showed that in the past 60 years,spring wind erosion climate factor(CSp)and monthly C of the whole region and each province(region)all showed highly significant decreasing trend,but they began to show rebounded trend in the middle or late 2000s.CSp of the study area showed a significant upward trend since 2008 with an increase of 4.59(10a)^(-1).The main contributors to this upward trend are the changes of C in March and in April.For the four provinces(regions),CSp in Heilongjiang,Jilin,Liaoning and eastern Inner Mongolia all showed rebounded since 2008,2011,2008 and 2009,respectively.The rebounded trend of CSp in eastern Inner Mongolia was the most obvious with a tendency rate of 11.27(10a)^(-1),and its mutation occurred after 1984.The rebound trend of CSp in Heilongjiang Province takes the second place,with a trend rate of 4.72(10a)^(-1),but there’s no obvious time mutation characteristics.The spatial characteristics of CSpand monthly C are similar,showing decreasing characteristics centered on the typical black soil belt of Northeast China.Compared with 1961-1990,in the period from 1991 to 2020,the proportion of high value areas(CSp>35,monthly C>10)has decreased to varying degrees,while the proportion of low value areas(CSp≤10,monthly C≤4)has increased.The trends of seasonal and monthly C in 82.2%~87.7%of the stations show significant decreases at 95%confidence level.CSp is closely related to wind speed at 2m height,temperature difference,minimum temperature and precipitation in the same period,of which the correlation between CSp and wind speed is the strongest,indicating that the main control factor for CSp in the study area is wind speed,but the impact of the change of temperature and precipitation on CSp cannot be ignored.
文摘Soil physicochemical parameters are the physical and chemical characteristics of soil such as pH, bulk density, organic carbon, nitrogen content, and nutrient levels at different soil depths. These parameters vary from one vegetation to the other and from one soil to the other. The study assessed the variations in soil physicochemical parameters of the natural forest and plantations in Agu Eke (Eke bush) in Etti village, Nanka and Umunnebo village, Ufuma both located in Orumba North Local Government Area, Anambra State. The experimental research design and stratified random sampling methods were used for the study and a total of 12 soil samples were collected at 30 cm depth from the selected locations of natural forest, cashew and palm plantations. The samples were analyzed using laboratory Varian AA240 Atomic Absorption Spectrophotometer, after which the result was subjected to statistical analysis—Analysis of Variance (ANOVA). The study found that there was no significant difference (variation) between the moisture contents of natural forests and the plantations;that is, the moisture contents were the same. It was also found that there was no significant variation between the bulk densities of the natural forest, oil plantation, and cashew plantation, meaning that the bulk densities were significantly the same. However, there were significant variations in nitrogen, potassium and phosphates, with p-values: sig = .000 < .05, sig = .010 < .05 and sig = .000 < .05, respectively. That is, the nitrogen and phosphate contents of the natural forest significantly vary more than those of the oil palm and cashew plantations, which probably means that by reducing natural forest to plantation, the nitrogen and phosphate contents of the natural forest reduced from what it used to be when the lands were mere forests. This shows that plantations do not have the same function of maintaining or improving soil quality as natural forests. The study recommended adopting a sustainable plantation agricultural system, such as using diverse nutrient sources (manure and compost), in order to maintain the desired soil quality.