Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density ...Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.展开更多
The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and...The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and evaluating the electrode quality during fabrication. In this review, analogous to the cell microenvironment well-known in biology, we introduce the concept of ‘‘active material microenvironment”(ME@AM)that is built by the ion/electron transport structures surrounding the AMs, for better understanding the significance of the electrode microstructures. Further, the scientific significance of electrode processing for electrode quality control is highlighted by its strong links to the structuring and quality control of ME@AM. Meanwhile, the roles of electrode rheology in both electrode structuring and structural characterizations involved in the entire electrode manufacturing process(i.e., slurry preparation, coating/printing/extrusion, drying and calendering) are specifically detailed. The advantages of electrode rheology testing on in-situ characterizations of the electrode qualities/structures are emphasized. This review provides a glimpse of the electrode rheology engaged in electrode manufacturing process and new insights into the understanding and effective regulation of electrode microstructures for future high-performance batteries.展开更多
A novel carbon foam with microporous structure(CFMS),with the advantages of a simple fabrication process,low energy consumption,large specific surface area and high conductivity,has been prepared by a facile one-step ...A novel carbon foam with microporous structure(CFMS),with the advantages of a simple fabrication process,low energy consumption,large specific surface area and high conductivity,has been prepared by a facile one-step carbonization.In addition,the carbon foam possesses suitable interlayer spacing in short range which is flexible to accommodate the deformation of carbon layer caused by the ion insertion and deinsertion at the charge and discharge state.Furthermore,a low cost carbon-based symmetric potassium dual-ion capacitor(PDIC),which integrates the virtues of potassium ion capacitors and dual-ion batteries,is successfully established with CFMS as both the battery-type cathode and the capacitor-type anode.PDIC displays a superior rate performance,an ultra-long cycle life(90%retention after 10000 cycles),and a high power density of 7800 W kg^-1 at an energy density of 39Whkg^-1.The PDIC also exhibits excellent ultrafast charge and slow discharge properties,with a full charge in just 60 s and a discharge time of more than 3000 s.展开更多
A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control...A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control model by employing the Robin boundary condition when introduced the solution of the 2-D Poisson’s equation in the density of charge depleted in the AlGaN layer. The dependence of 2-DEG sheet carrier concentration on the aluminum composition and AlGaN layer thickness has been investigated in detail. Current–voltage characteristics developed from the 2-DEG model in order to take into account the impact of gate lengths. The relation between the kink effect and existing deep centers has also been confirmed by using an electrical approach, which can allow to adjust some of electron transport parameters in order to optimize the output current.展开更多
We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of elec...We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites,easy access of electrolyte ions,and facile charge transport for flexible wearable applications.The interconnected and compact electrode delivers a high volumetric capacitance(gravimetric capacitance)of 73 F cm−3(2446 F g−1),excellent rate capability,and cycle stability.The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire(NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire(Mn3O4/3D-Ni)hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1.The red lightemitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions.The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times,for smart wearable and implantable devices.展开更多
特高压直流GIL运行可靠性取决于内绝缘设计的可靠性。此外,导电元件直流电流密度的取值、弹簧触头的定位设计、GIL各元件中的绝缘件与金具连接处的楔形气隙的处理以及母线中支撑件的结构设计细节,都会对产品运行可靠性产生重大影响,不...特高压直流GIL运行可靠性取决于内绝缘设计的可靠性。此外,导电元件直流电流密度的取值、弹簧触头的定位设计、GIL各元件中的绝缘件与金具连接处的楔形气隙的处理以及母线中支撑件的结构设计细节,都会对产品运行可靠性产生重大影响,不能忽视。对于运行环境十分严酷的UHV DC GIL为保证内绝缘工作可靠性和减少气体维护工作量,文中还提出了高气密性结构设计。为适应-50℃低温运行要求,产品选用了液化温度很低的N_(2)/SF_(6)混合气体,对两种气体的配比,压力特性和绝缘特性进行了讨论与计算。还有产品的局放、气体密度及微水含量的监视系统的可靠性设计,都会对产品运行可靠性产生直接影响。文中对上述问题的研究成果作了介绍,可供高压直流产品设计使用。对其中未解的新技术如基于冷镜露点测试原理、微机电技术制作的智能气体湿度和密度监测装置、高压直流复合绝缘套管伞面局放起始场强提出了研究方案。文中提出的诸多GIL运行可靠性设计要点,对于其他超/特高压直流气体绝缘电器可参考选用。展开更多
Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the correspon...Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the corresponding current signals cover a bandwidth of 0 to more than 20 MHz.Measurement accuracy of the current from the high voltage side is affected by the displacement current and impulse electromagnetic interference.In this paper,a coaxial current sensor with a DC bandwidth of 74.45 MHz is developed.A displacement current-restrained electrode structure is proposed to reduce the equivalent capacitance between the current sensor and the ground over 30 times.Combined with the digital optical fiber synchronous acquisition unit,a current measurement system for long air gap discharge is established.For the purpose of the UHV system’s external insulation optimization design,the discharge current waveform of a 6 m rod-plane air gap under positive switching impulse voltage with 250µs and 1000µs time to crest is obtained.Discharge images and stressed voltage are combined to analyze the continuous feature of a current waveform under critical time to crest impulse and discontinuous feature under long front duration impulse.For the purposes of a lightning protection study,the current waveform of a 10 m rod-plane air gap is subjected to negative switching impulse.Finally,the pulse characteristics of the current corresponding to the single channel and branching stepped negative leader are discussed.展开更多
人体处于高压交流输电线路下方时,会产生静电感应和电磁感应。当感应电压和感应电流数值过大时,会对人体造成伤害,为此国际非电离辐射防护委员会(ICNIRP)以及IEEE规定了人体在高压输电线路不同曝露情形下的曝露场强限值。首先运用有限元...人体处于高压交流输电线路下方时,会产生静电感应和电磁感应。当感应电压和感应电流数值过大时,会对人体造成伤害,为此国际非电离辐射防护委员会(ICNIRP)以及IEEE规定了人体在高压输电线路不同曝露情形下的曝露场强限值。首先运用有限元法,考虑人体对地绝缘和人体接地2种情况,分析了高压输电线路曝露场强典型限值下人体所产生的感应电压和感应场强的大小;接着利用解析法计算了不同曝露限值下的人体感应电流、感应电荷密度以及感应电流密度;最后将计算结果与ICNIRP导则给出的曝露限值进行了比较。结果表明,人体处于职业曝露限值场强10 kV/m下,人体内部最大感应场强为2.082×10-3 kV/m,感应电流密度为0.176 m A/m2,接近或低于ICNIRP导则规定的限值范围,不会对人体造成不适感。展开更多
选取Co、Zn、Ca、Mg、Cu等元素与Ni元素按照一定的化学计量比"合金化",实行修饰或掺杂,制备出新型氢氧化镍(New Type Nickel Hyclroxide,NTNH)。利用X射线衍射、扫描电镜和恒电流充放电技术测试其相结构、表面微观形貌和充放...选取Co、Zn、Ca、Mg、Cu等元素与Ni元素按照一定的化学计量比"合金化",实行修饰或掺杂,制备出新型氢氧化镍(New Type Nickel Hyclroxide,NTNH)。利用X射线衍射、扫描电镜和恒电流充放电技术测试其相结构、表面微观形貌和充放电性能。研究结果表明:和商业产品相比,新型氢氧化镍具有良好的高温大电流充放电性能和循环稳定性。实现多种元素共沉积,利用元素之间的协同效应,是改善氢氧化镍正极材料高温大电流充放电性能的一条有效途径。展开更多
基金the financial support from the National Natural Science Foundation of China(51672033,U1610255,U1703251).
文摘Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
基金the financial support from the National Natural Science Foundation of China and the start-up projectthe Sichuan-University-Dazhou Joint project(00309053A2037)+1 种基金the Fundamental Research Funds for the Central Universitiespartially sponsored by the Double First-Class Construction Funds of Sichuan University。
文摘The microstructures on electrode level are crucial for battery performance, but the ambiguous understanding of both electrode microstructures and their structuring process causes critical challenges in controlling and evaluating the electrode quality during fabrication. In this review, analogous to the cell microenvironment well-known in biology, we introduce the concept of ‘‘active material microenvironment”(ME@AM)that is built by the ion/electron transport structures surrounding the AMs, for better understanding the significance of the electrode microstructures. Further, the scientific significance of electrode processing for electrode quality control is highlighted by its strong links to the structuring and quality control of ME@AM. Meanwhile, the roles of electrode rheology in both electrode structuring and structural characterizations involved in the entire electrode manufacturing process(i.e., slurry preparation, coating/printing/extrusion, drying and calendering) are specifically detailed. The advantages of electrode rheology testing on in-situ characterizations of the electrode qualities/structures are emphasized. This review provides a glimpse of the electrode rheology engaged in electrode manufacturing process and new insights into the understanding and effective regulation of electrode microstructures for future high-performance batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.51672078 and 21473052)Hunan University State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body Independent Research Project(No.71675004)+2 种基金the Fundamental Research Funds for the Central UniversitiesHunan Natural Science Foundation(2019JJ40031)Foundation of State Key Laboratory of Coal Conversion(Grant J1718-903)。
文摘A novel carbon foam with microporous structure(CFMS),with the advantages of a simple fabrication process,low energy consumption,large specific surface area and high conductivity,has been prepared by a facile one-step carbonization.In addition,the carbon foam possesses suitable interlayer spacing in short range which is flexible to accommodate the deformation of carbon layer caused by the ion insertion and deinsertion at the charge and discharge state.Furthermore,a low cost carbon-based symmetric potassium dual-ion capacitor(PDIC),which integrates the virtues of potassium ion capacitors and dual-ion batteries,is successfully established with CFMS as both the battery-type cathode and the capacitor-type anode.PDIC displays a superior rate performance,an ultra-long cycle life(90%retention after 10000 cycles),and a high power density of 7800 W kg^-1 at an energy density of 39Whkg^-1.The PDIC also exhibits excellent ultrafast charge and slow discharge properties,with a full charge in just 60 s and a discharge time of more than 3000 s.
文摘A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control model by employing the Robin boundary condition when introduced the solution of the 2-D Poisson’s equation in the density of charge depleted in the AlGaN layer. The dependence of 2-DEG sheet carrier concentration on the aluminum composition and AlGaN layer thickness has been investigated in detail. Current–voltage characteristics developed from the 2-DEG model in order to take into account the impact of gate lengths. The relation between the kink effect and existing deep centers has also been confirmed by using an electrical approach, which can allow to adjust some of electron transport parameters in order to optimize the output current.
基金supported by national research foundation of Korea(NRF)(No.NRF-2019R1H1A2039743)S-Oil corporation,and “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry and Energy,Republic of Korea(No.20194010201890)
文摘We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites,easy access of electrolyte ions,and facile charge transport for flexible wearable applications.The interconnected and compact electrode delivers a high volumetric capacitance(gravimetric capacitance)of 73 F cm−3(2446 F g−1),excellent rate capability,and cycle stability.The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire(NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire(Mn3O4/3D-Ni)hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1.The red lightemitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions.The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times,for smart wearable and implantable devices.
文摘特高压直流GIL运行可靠性取决于内绝缘设计的可靠性。此外,导电元件直流电流密度的取值、弹簧触头的定位设计、GIL各元件中的绝缘件与金具连接处的楔形气隙的处理以及母线中支撑件的结构设计细节,都会对产品运行可靠性产生重大影响,不能忽视。对于运行环境十分严酷的UHV DC GIL为保证内绝缘工作可靠性和减少气体维护工作量,文中还提出了高气密性结构设计。为适应-50℃低温运行要求,产品选用了液化温度很低的N_(2)/SF_(6)混合气体,对两种气体的配比,压力特性和绝缘特性进行了讨论与计算。还有产品的局放、气体密度及微水含量的监视系统的可靠性设计,都会对产品运行可靠性产生直接影响。文中对上述问题的研究成果作了介绍,可供高压直流产品设计使用。对其中未解的新技术如基于冷镜露点测试原理、微机电技术制作的智能气体湿度和密度监测装置、高压直流复合绝缘套管伞面局放起始场强提出了研究方案。文中提出的诸多GIL运行可靠性设计要点,对于其他超/特高压直流气体绝缘电器可参考选用。
基金supported by the Fund of the National Basic Research of China(2011CB 209403).
文摘Measuring the pre-breakdown current of long sparks in air is important for investigating the discharge mechanism.Since the breakdown of long air gaps is conducted by a series of streamer-leader processes,the corresponding current signals cover a bandwidth of 0 to more than 20 MHz.Measurement accuracy of the current from the high voltage side is affected by the displacement current and impulse electromagnetic interference.In this paper,a coaxial current sensor with a DC bandwidth of 74.45 MHz is developed.A displacement current-restrained electrode structure is proposed to reduce the equivalent capacitance between the current sensor and the ground over 30 times.Combined with the digital optical fiber synchronous acquisition unit,a current measurement system for long air gap discharge is established.For the purpose of the UHV system’s external insulation optimization design,the discharge current waveform of a 6 m rod-plane air gap under positive switching impulse voltage with 250µs and 1000µs time to crest is obtained.Discharge images and stressed voltage are combined to analyze the continuous feature of a current waveform under critical time to crest impulse and discontinuous feature under long front duration impulse.For the purposes of a lightning protection study,the current waveform of a 10 m rod-plane air gap is subjected to negative switching impulse.Finally,the pulse characteristics of the current corresponding to the single channel and branching stepped negative leader are discussed.
文摘人体处于高压交流输电线路下方时,会产生静电感应和电磁感应。当感应电压和感应电流数值过大时,会对人体造成伤害,为此国际非电离辐射防护委员会(ICNIRP)以及IEEE规定了人体在高压输电线路不同曝露情形下的曝露场强限值。首先运用有限元法,考虑人体对地绝缘和人体接地2种情况,分析了高压输电线路曝露场强典型限值下人体所产生的感应电压和感应场强的大小;接着利用解析法计算了不同曝露限值下的人体感应电流、感应电荷密度以及感应电流密度;最后将计算结果与ICNIRP导则给出的曝露限值进行了比较。结果表明,人体处于职业曝露限值场强10 kV/m下,人体内部最大感应场强为2.082×10-3 kV/m,感应电流密度为0.176 m A/m2,接近或低于ICNIRP导则规定的限值范围,不会对人体造成不适感。
文摘选取Co、Zn、Ca、Mg、Cu等元素与Ni元素按照一定的化学计量比"合金化",实行修饰或掺杂,制备出新型氢氧化镍(New Type Nickel Hyclroxide,NTNH)。利用X射线衍射、扫描电镜和恒电流充放电技术测试其相结构、表面微观形貌和充放电性能。研究结果表明:和商业产品相比,新型氢氧化镍具有良好的高温大电流充放电性能和循环稳定性。实现多种元素共沉积,利用元素之间的协同效应,是改善氢氧化镍正极材料高温大电流充放电性能的一条有效途径。