期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experiment Study on the Ending Criteria of Charge and Discharge of Nickel-Hydride Battery 被引量:4
1
作者 孙逢春 陈勇 +1 位作者 何洪文 张承宁 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期56-60,共5页
Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were... Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were depicted. Variations of the aforementioned four parameters are differently obvious. Ending criteria of charge and discharge of Ni/MH batteries are discussed on the basis of the curves. Voltage, capacity and temperature of a battery can be used as ending criteria during charge. When discharge takes place, voltage, capacity and internal resistance can be chosen as ending criteria. As a whole, capacity is more suitable for being used as ending criteria of charge and discharge than the other three parameters. At last, the capacity of a battery is recommended to be ending criteria of charge and discharge. The conclusions will provide references to different capacity Ni/MH batteries for electric vehicles. 展开更多
关键词 electric vehicles Ni/MH batteries charge and discharge characteristics charge and discharge criteria
下载PDF
Characteristics of charge and discharge of PMMA samples due to electron irradiation 被引量:1
2
作者 封国宝 王芳 +1 位作者 胡天存 曹猛 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期518-524,共7页
In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiat... In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiated by a non- focused electron beam. Electron scattering and transport processes in the sample are simulated with the Monte Carlo and the finite-different time-domain (FDTD) methods, respectively. The properties of charge and discharge processes are presented by the evolution of internal currents, charge quantity, surface potential, and discharge time. Internal charge accumulation in the sample may reach saturation by primary electron (PE) irradiation providing the charge duration is enough. Internal free electrons will run off to the ground in the form of leakage current due to charge diffusion and drift during the discharge process after irradiation, while trapped electrons remain. The negative surface potential determined by the charging quantity decreases to its saturation in the charge process, and then increases in the discharge process. A larger thickness of the PMMA film will result in greater charge amount and surface potential in charge saturation and in final discharge state, while the electron mobility of the material has little effects on the final discharge state. Moreover, discharge time is less for smaller thickness or larger electron mobility. The presented results can be helpful for estimating and weakening the charging of insulating samples especially under the intermittent electron beam irradiation in related surface analysis or measurement. 展开更多
关键词 charge and discharge PMMA numerical simulation electron irradiation
下载PDF
Modeling and Simulations in Symmetrical Supercapacitors Using Time Domain Mathematical Expressions
3
作者 Antonio Paulo Rodrigues Fernandez Elio Alberto Périgo Rubens Nunes de Faria Júnior 《Journal of Applied Mathematics and Physics》 2022年第10期3083-3100,共18页
This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of... This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k. 展开更多
关键词 Symmetrical Supercapacitors Electrical Circuit Modeling Potential Dependent Capacitance Simulation of charge and discharge Curves Time Domain Mathematical Equations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部