A fluctuating charge interaction potential function for alanine-water was constructed in the spirit of newly developed ABEEMax/MM(atom-bond electronegativity equalization method at the azc level fused into molecular ...A fluctuating charge interaction potential function for alanine-water was constructed in the spirit of newly developed ABEEMax/MM(atom-bond electronegativity equalization method at the azc level fused into molecular mechanics). The properties of gaseous neutral alanine-(H20)n(n=l--7) clusters were systematically investigated by quantum mechanics(QM) and the constructed ABEEMax/MM potential, such as conformations, hydrogen bonds (H-bonds), interaction energies, charge distributions, and so on. The results of ABEEM^rrc/MM model are in fair agreement with those of QM and available experimental data. For isolated alanine, compared with those of experi- mental structure, the average absolute deviations(AAD) of bond length and bond angle are 0.002 nm and 1.4~, re- spectively. For alanine-water clusters, the AAD of interaction energies and H-bond lengths are only 3.77 kJ/mol and 0.012 nm, respectively, compared to the results of MP2/aug-cc-pVDZ//MP2/6-31 I+G** method. The ABEEMa charges fluctuate with the changing conformation of the system, and can accurately and reasonably reflect the inter- polarization between water and alanine. The presented alanine-water potential function may provide a basis for fur- ther simulations on related aqueous solutions ofbiomolecules.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21133005, 20703022 and 21011120087) and the Project of Educational Bureau of Liaoning Province, China(No.2009T057).
文摘A fluctuating charge interaction potential function for alanine-water was constructed in the spirit of newly developed ABEEMax/MM(atom-bond electronegativity equalization method at the azc level fused into molecular mechanics). The properties of gaseous neutral alanine-(H20)n(n=l--7) clusters were systematically investigated by quantum mechanics(QM) and the constructed ABEEMax/MM potential, such as conformations, hydrogen bonds (H-bonds), interaction energies, charge distributions, and so on. The results of ABEEM^rrc/MM model are in fair agreement with those of QM and available experimental data. For isolated alanine, compared with those of experi- mental structure, the average absolute deviations(AAD) of bond length and bond angle are 0.002 nm and 1.4~, re- spectively. For alanine-water clusters, the AAD of interaction energies and H-bond lengths are only 3.77 kJ/mol and 0.012 nm, respectively, compared to the results of MP2/aug-cc-pVDZ//MP2/6-31 I+G** method. The ABEEMa charges fluctuate with the changing conformation of the system, and can accurately and reasonably reflect the inter- polarization between water and alanine. The presented alanine-water potential function may provide a basis for fur- ther simulations on related aqueous solutions ofbiomolecules.