A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technolo...A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0. 25μm 2. 5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.展开更多
A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor...A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor (CMOS) process with a 2.5 V supply voltage, HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error, Incorporated fast lock circuit can shorten start-up time to below 300 ns.展开更多
A 3.5 times PLL clock frequency multiplier for low voltage different signal (LVDS) driver is presented. A novel adaptive charge pump can automatically switch the loop bandwidth and a voltage-controlled oscillator (...A 3.5 times PLL clock frequency multiplier for low voltage different signal (LVDS) driver is presented. A novel adaptive charge pump can automatically switch the loop bandwidth and a voltage-controlled oscillator (VCO) is designed with the aid of frequency ranges reuse technology. The circuit is implemented using 1st Silicon 0.25 μm mixed-signal complementary metal-oxide-semiconductor (CMOS) process. Simulation results show that the PLL clock frequency multiplier has very low phase noise and very short capture time .展开更多
A fully-differential charge pump(FDCP)with perfect current matching and low output current noise is realized for phase-locked loops(PLLs).An easily stable common-mode feedback(CMFB)circuit which can handle high ...A fully-differential charge pump(FDCP)with perfect current matching and low output current noise is realized for phase-locked loops(PLLs).An easily stable common-mode feedback(CMFB)circuit which can handle high input voltage swing is proposed.Current mismatch and current noise contribution from the CMFB circuit is minimized.In order to optimize PLL phase noise,the output current noise of the FDCP is analyzed in detail and calculated with the sampling principle.The calculation result agrees well with the simulation.Based on the noise analysis,many methods to lower output current noise of the FDCP are discussed.The fully-differential charge pump is integrated into a 1–2 GHz frequency synthesizer and fabricated in an SMIC CMOS 0.18μm process.The measured output reference spur is–64 dBc to–69 dBc.The in-band and out-band phase noise is–95 dBc/Hz at 3 kHz frequency offset and–123 dBc/Hz at 1 MHz frequency offset respectively.展开更多
A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output...A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range.展开更多
A new high performance charge pump circuit is designed and realized in 0.18μm CMOS process. A wide input ranged rail-to-rail operational amplifier and self-biasing cascode current mirror are used to enable the charge...A new high performance charge pump circuit is designed and realized in 0.18μm CMOS process. A wide input ranged rail-to-rail operational amplifier and self-biasing cascode current mirror are used to enable the charge pump current to be well matched in a wide output voltage range.Furthermore,a method of adding a precharging current source is proposed to increase the initial charge current,which will speed up the settling time of CPPLLs.Test results show that the current mismatching can be less than 0.4%in the output voltage range of 0.4 to 1.7 V,with a charge pump current of 100μA and a precharging current of 70μA.The average power consumption of the charge pump in the locked condition is around 0.9 mW under a 1.8 V supply voltage.展开更多
In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived a...In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived and compared with the traditional s-domain method.The simulation results under SPECTRE show that,due to the sampling nature of CPLL,the traditional s-domain analysis is unable to predict its jitter peaking accurately,especially when the loop delay is taken into consideration.The impact of loop delay on the stability of the third-order CPLL system is further analyzed based on the proposed way.The stability limit of the wide bandwidth CPLL with loop delay is calculated.The circuit simulation results agree well with mathematical analysis.展开更多
A radiation-hardened-by-design (RHBD) technique for phase-locked loops (PLLs) has been developed for single-event transient (SET) mitigation. By presenting a novel SET-resistant complementary current limiter (...A radiation-hardened-by-design (RHBD) technique for phase-locked loops (PLLs) has been developed for single-event transient (SET) mitigation. By presenting a novel SET-resistant complementary current limiter (CCL) and implementing it between the charge pump (CP) and the loop filter (LPF), the PLL's single-event susceptibility is significantly decreased in the presence of SETs in CPs, whereas it has little impact on the loop parameters in the absence of SETs in CPs. Transistor-level simulation results show that the CCL circuit can significantly reduce the voltage perturbation on the input of the voltage-controlled oscillator (VCO) by up to 93.1% and reduce the recovery time of the PLL by up to 79.0%. Moreover, the CCL circuit can also accelerate the PLL recovery procedure from loss of lock due to phase or frequency shift, as well as a single-event strike.展开更多
文摘A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0. 25μm 2. 5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.
基金Supported by the National High Technology Re-search and Development Programof China (2004AA122310)
文摘A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor (CMOS) process with a 2.5 V supply voltage, HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error, Incorporated fast lock circuit can shorten start-up time to below 300 ns.
基金Supported by the National Key Pre-Research Project of China (413010701-3)
文摘A 3.5 times PLL clock frequency multiplier for low voltage different signal (LVDS) driver is presented. A novel adaptive charge pump can automatically switch the loop bandwidth and a voltage-controlled oscillator (VCO) is designed with the aid of frequency ranges reuse technology. The circuit is implemented using 1st Silicon 0.25 μm mixed-signal complementary metal-oxide-semiconductor (CMOS) process. Simulation results show that the PLL clock frequency multiplier has very low phase noise and very short capture time .
基金supported by the National High Technology Research and Development Program of China(No.2007AA01Z282)the National Natural Science Foundation of China(No.60876019)
文摘A fully-differential charge pump(FDCP)with perfect current matching and low output current noise is realized for phase-locked loops(PLLs).An easily stable common-mode feedback(CMFB)circuit which can handle high input voltage swing is proposed.Current mismatch and current noise contribution from the CMFB circuit is minimized.In order to optimize PLL phase noise,the output current noise of the FDCP is analyzed in detail and calculated with the sampling principle.The calculation result agrees well with the simulation.Based on the noise analysis,many methods to lower output current noise of the FDCP are discussed.The fully-differential charge pump is integrated into a 1–2 GHz frequency synthesizer and fabricated in an SMIC CMOS 0.18μm process.The measured output reference spur is–64 dBc to–69 dBc.The in-band and out-band phase noise is–95 dBc/Hz at 3 kHz frequency offset and–123 dBc/Hz at 1 MHz frequency offset respectively.
基金Project supported by the National Defense Pre-Research Project of China(No.51308010610)
文摘A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range.
基金Project supported by the National High Technology Research and Development Program of China(No.2007AA01Z2A7)
文摘A new high performance charge pump circuit is designed and realized in 0.18μm CMOS process. A wide input ranged rail-to-rail operational amplifier and self-biasing cascode current mirror are used to enable the charge pump current to be well matched in a wide output voltage range.Furthermore,a method of adding a precharging current source is proposed to increase the initial charge current,which will speed up the settling time of CPPLLs.Test results show that the current mismatching can be less than 0.4%in the output voltage range of 0.4 to 1.7 V,with a charge pump current of 100μA and a precharging current of 70μA.The average power consumption of the charge pump in the locked condition is around 0.9 mW under a 1.8 V supply voltage.
基金Supported by National Natural Science Foundation of China(No.61204028)
文摘In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived and compared with the traditional s-domain method.The simulation results under SPECTRE show that,due to the sampling nature of CPLL,the traditional s-domain analysis is unable to predict its jitter peaking accurately,especially when the loop delay is taken into consideration.The impact of loop delay on the stability of the third-order CPLL system is further analyzed based on the proposed way.The stability limit of the wide bandwidth CPLL with loop delay is calculated.The circuit simulation results agree well with mathematical analysis.
基金supported by the National Natural Science Foundation of China(Nos.60836004,60676010)the PhD Program of Ministry of Education of China(No.20079998015)the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘A radiation-hardened-by-design (RHBD) technique for phase-locked loops (PLLs) has been developed for single-event transient (SET) mitigation. By presenting a novel SET-resistant complementary current limiter (CCL) and implementing it between the charge pump (CP) and the loop filter (LPF), the PLL's single-event susceptibility is significantly decreased in the presence of SETs in CPs, whereas it has little impact on the loop parameters in the absence of SETs in CPs. Transistor-level simulation results show that the CCL circuit can significantly reduce the voltage perturbation on the input of the voltage-controlled oscillator (VCO) by up to 93.1% and reduce the recovery time of the PLL by up to 79.0%. Moreover, the CCL circuit can also accelerate the PLL recovery procedure from loss of lock due to phase or frequency shift, as well as a single-event strike.