期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Revealing interfacial charge redistribution of homologous Ru-RuS_(2) heterostructure toward robust hydrogen oxidation reaction
1
作者 Yi Liu Lianrui Cheng +5 位作者 Shuqing Zhou Yuting Yang Chenggong Niu Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期332-339,共8页
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)... Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance. 展开更多
关键词 HETEROSTRUCTURE Hollow spherical structure Hydrogen oxidation reaction charge redistribution Density functional calculation
下载PDF
Charge redistribution caused by sulfur doping of bimetal FeCo phosphides supported on heteroatoms-doped graphene for Zn-air batteries with stable cycling
2
作者 Jin-Tao Ren Yi-Dai Ying +2 位作者 Yu-Ping Liu Wei Li Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期619-630,I0017,共13页
Exploring feasible synthesis approaches to highly efficient and robust bifunctional electrocatalysts toward both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is triggering researcher’s even-increas... Exploring feasible synthesis approaches to highly efficient and robust bifunctional electrocatalysts toward both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is triggering researcher’s even-increasing interest in rechargeable Zn-air batteries.Herein,sulfur-doped bimetal FeCo phosphide nanoparticles dispersed on N,P,S-tri-doped graphene(donated as S-FeCo3P/NPSG)are rationally prepared through a controllable one-step carbothermal-phosphorization strategy.The modified charge distribution and electron-donor properties of S-FeCo3P/NPSG caused by S decoration render a significantly beneficial effect on the electrocatalytic activities.Consequently,the S-FeCo3P/NPSG electrode exhibits extraordinary bifunctional activities toward oxygen electrochemistry of the OER overpotential of 290 m V at 10 m A cm^(-2) and the ORR half-wave potential of 0.83 V,approaching to that of noblemetal IrO_(2)(289 m V)and Pt/C(0.84 V),respectively,but with more stronger operation stability in alkaline media.When S-FeCo3P/NPSG serves as the air cathode for liquid-state Zn-air battery,the large peak power density and energy density,as well as superb discharge-charge durability(cycling life>600 h)of this device are obtained.Furthermore,all-solid-state Zn-air battery with S-FeCo3P/NPSG as air electrode also displays excellent mechanical flexibility,high power density and stable cycling stability.The self-reconstruction behavior of the S-FeCo3P/NPSG cathode catalysts is also investigated during the electrocatalytic Zn-air battery operation.This work would provide some novel inspiration from aspects of bonding and charge distribution for the rational construction of active and cost-efficient bifucntional oxygen electrocatalysts for energy storage and conversion devices. 展开更多
关键词 charge redistribution Metal phosphides Bifunctional electrocatalyst Oxygen electrocatalysis Zinc-air batteries
下载PDF
Interfacial charge redistribution to promote the catalytic activity of Vs-CoP-CoS_(2)/C n-n heterojunction for oxygen evolution
3
作者 Jiawen Sun Hui Xue +4 位作者 Jing Sun Niankun Guo Tianshan Song Yi-Ru Hao Qin Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期611-616,共6页
Modulating surface charge redistribution based on interface and defect engineering has been considered as a resultful means to boost electrocatalytic activity.However,the mechanism of synergistic regulation of heteroj... Modulating surface charge redistribution based on interface and defect engineering has been considered as a resultful means to boost electrocatalytic activity.However,the mechanism of synergistic regulation of heterojunction and vacancy defects remains unclear.Herein,a Vs-CoP-CoS_(2)/C n-n heterojunction with sulfur vacancies is successfully constructed,which manifests superior electrocatalytic activity for oxygen evolution,as demonstrated by a low overpotential of 170 mV to reach 10 mA/cm^(2).The experimental results and density functional theory calculations testify that the outstanding OER performance of Vs-CoP-CoS_(2)/C heterojunction is owed to the synergistic effect of sulfur vacancies and built-in electric field at n-n heterogeneous interface,which accelerates the electron transfer,induces the charge redistribution,and regulates the adsorption energy of active intermediates during the reaction.This study affords a promising means to regulate the electrocatalytic performance by the construction of heterogeneous interfaces and defects,and in-depth explores the synergistic mechanisms of n-n heterojunction and vacancies. 展开更多
关键词 charge redistribution n-n Heterojunction Built-in electric field Sulfur vacancy Oxygen evolution reaction
原文传递
Electron-deficient ZnO induced by heterointerface engineering as the dominant active component to boost CO_(2)-to-formate conversion
4
作者 Qing Qin Zijian Li +8 位作者 Yingzheng Zhang Haeseong Jang Li Zhai Liqiang Hou Xiaoqian Wei Zhe Wang Min Gyu Kim Shangguo Liu Xien Liu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期127-136,共10页
Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,bu... Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction. 展开更多
关键词 charge redistribution CO_(2)reduction reaction ELECTROCATALYST heterointerfaces SELECTIVITY
下载PDF
Plasma-induced Mo-doped Co_(3)O_(4)with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting 被引量:8
5
作者 Yujie Huang Meng Li +4 位作者 Fei Pan Zhuoya Zhu Huamei Sun Yawen Tang Gengtao Fu 《Carbon Energy》 SCIE CSCD 2023年第3期98-111,共14页
Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great cha... Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great challenge in both the preparation and catalytic mechanism.Herein,we proposed a novel and efficient Ar-plasma(P)-assisted strategy to construct heteroatom Mo-substituted and oxygen vacancies enriched hierarchical spinel Co_(3)O_(4)porous nanoneedle arrays in situ grown on carbon cloth(denoted P-Mo-Co_(3)O_(4)@CC)to improve the OER performance.Ar-plasma technology can efficiently generate vacancy sites at the surface of hydroxide,which induces the anchoring of Mo anion salts through electrostatic interaction,finally facilitating the substitution of Mo atoms and the formation of oxygen vacancies on the Co_(3)O_(4)surface.The P-Mo-Co_(3)O_(4)@CC affords a low overpotential of only 276 mV at 10 mA cm^(−2)for the OER,which is 58 mV superior to that of Mo-free Co_(3)O_(4)@CC and surpasses commercial RuO_(2)catalyst.The robust stability and satisfactory selectivity(nearly 100%Faradic efficiency)of P-Mo-Co_(3)O_(4)@CC for the OER are also demonstrated.Theoreti-cal studies demonstrate that Mo with variable valance states can efficiently regulates the atomic ratio of Co^(3+)/Co^(2+)and increases the number of oxygen vacancies,thereby inducing charge redistribution and tuning the d-band center of Co_(3)O_(4),which improve the adsorption energy of oxygen intermediates(e.g.,*OOH)on P-Mo-Co_(3)O_(4)@CC during OER.Furthermore,the two-electrode OER//HER electrolyzer equipped with P-Mo-Co_(3)O_(4)@CC as anode displays a low operation potential of 1.54 V to deliver a current density of 10 mA cm^(−2),and also exhibits good reversibility and anticurrent fluctuation ability under simulated real energy supply conditions,demonstrating the great potential of P-Mo-Co_(3)O_(4)@CC in water electrolysis. 展开更多
关键词 charge redistribution Mo‐Co_(3)O_(4) nanoneedle arrays oxygen evolution reaction oxygen vacancy water electrolysis
下载PDF
Nitrogen vacancies enriched Ce-doped Ni_(3)N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis 被引量:4
6
作者 Meng Li Xiaodong Wu +6 位作者 Kun Liu Yifan Zhang Xuechun Jiang Dongmei Sun Yawen Tang Kai Huang Gengtao Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期506-515,I0014,共11页
Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped b... Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped by its sluggish UOR kinetics and intricate reaction intermediates formation/desorption process.Herein,we report a novel and effective electrocatalyst consisting of carbon cloth supported nitrogen vacancies-enriched Ce-doped Ni_(3)N hierarchical nanosheets (Ce-Ni_(3)N @CC) to optimize the flat-footed UOR kinetics,especially the stiff rate-determine CO_(2)desorption step of UOR.Upon the introduction of valance state variable Ce,the resultant nitrogen vacancies enriched Ce-Ni_(3)N @CC exhibits an enhanced UOR performance where the operation voltage requires only 1.31 V to deliver the current density of 10 mA cm^(-2),which is superior to that of Ni_(3)N @CC catalyst (1.36 V) and other counterparts.Density functional theory (DFT) results demonstrate that the incorporation of Ce in Ni_(3)N lowers the formation energy of nitrogen vacancies,resulting in rich nitrogen vacancies in Ce-Ni_(3)N @CC.Moreover,the nitrogen vacancies together with Ce doping optimize the local charge distribution around Ni sites,and balance the adsorption energy of CO_(2)in the rate-determining step (RDS),as well as affect the initial adsorption structure of urea,leading to the superior UOR catalytic performance of Ce-Ni_(3)N @CC.When integrating the Ce-Ni_(3)N catalyst in UOR//HER and UOR//CO_(2)R flow electrolyzer,both of them perform well with low operation voltage and robust long-term stability,proofing that the thermodynamically favorable UOR can act as a suitable substitute anodic reaction compared with that of OER.Our findings here not only provide a novel UOR catalyst but also offer a promising design strategy for the future development of energy-related devices. 展开更多
关键词 Rare earth cerium Nickel nitride Nitrogen vacancies charge redistribution Urea oxidation reaction
下载PDF
One stone two birds:Vanadium doping as dual roles in self-reduced Pt clusters and accelerated water splitting 被引量:1
7
作者 Yihan Feng Zichuang Li +3 位作者 Shanlin Li Minghui Yang Ruguang Ma Jiacheng Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期493-501,I0014,共10页
Integrating active Pt clusters into transition-metal oxides with water-dissociation ability is effective to prepare a bifunctional electrocatalyst for water splitting in alkaline.However,the additional utilization of ... Integrating active Pt clusters into transition-metal oxides with water-dissociation ability is effective to prepare a bifunctional electrocatalyst for water splitting in alkaline.However,the additional utilization of a reductant and/or the operation at the elevating temperature causes the over-growth and agglomeration of Pt clusters,thus losing the high catalytic performance.Herein,we report that V dopant not only favors self-reducing Pt clusters on Ni Fe layered double hydroxide(LDH)(Pt/NiFeV)at room temperature,but also regulates interfacial charge redistribution to enhance the water-splitting performance.Experimental and theoretical studies reveal that V dopant into Ni Fe LDH triggers more electrons to transfer to adjacent Fe atoms,thus leading to a higher reducing ability compared to that without V-doping.When used as water-splitting electrocatalyst,V doping promotes electron loss of Pt clusters in Pt/Ni Fe V,optimizing the free energy of hydrogen adsorption and proton recombination kinetics at the cathode.Meanwhile,it also moves the d-band center of Ni away from the Fermi level to optimize the adsorption of*OH intermediates and facilitate the desorption of oxygen molecules at the anode.Thereby,Pt/Ni Fe V exhibits much higher bifunctional performance than V-free Pt/Ni Fe LDH toward both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).This work can spark inspiration of designing other bifunctional electrocatalysts for energy conversion and storage. 展开更多
关键词 V doping Self-reduction Interfacial charge redistribution Water splitting DFT calculation
下载PDF
How the surface Cu layer affected the activity of Ni foil for alkaline hydrogen evolution 被引量:1
8
作者 Qingfeng Hu Yuan Liu +5 位作者 Xuerong Zheng Jinfeng Zhang Jiajun Wang Xiaopeng Han Yida Deng Wenbin Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期11-18,共8页
Synthesizing bimetallic nanomaterials,with noble metals as the surface layers and inert metals as the substrates,has been proven to be an effective way to reduce the use of noble metals with maintained catalytic activ... Synthesizing bimetallic nanomaterials,with noble metals as the surface layers and inert metals as the substrates,has been proven to be an effective way to reduce the use of noble metals with maintained catalytic activity.However,an atomic diffusion from the inert substrate to the surface during the long-term operation has been reported to significantly decrease the activity.In this work,a series of catalysis-inert Cu-coated Ni foil were fabricated through electrodeposition and their activities for alkaline hydrogen evolution were investigated.Notably,the Ni/Cu-60 sample showed a similar catalytic property with pure Ni foil and only a slight decrease in HER activity was observed.The X-ray photoelectron spectroscopy(XPS)results indicated a decreased electron concentration of Cu in Ni/Cu-60,and theoretical calculations further demonstrated the electron transfer between the Ni substrate and Cu layer.Our results reveal that a specific composition or structure of an inert metal layer might not significantly decrease the electrocatalytic activity of active metals.Moreover,there are more possibilities for the rational design of metal-based catalysts for electrocatalysis. 展开更多
关键词 Bimetallic heterostructure charge redistribution Water splitting Alkaline hydrogen evolution
原文传递
Phase and chemical state tuning of FeNi oxides for oxygen evolution reaction
9
作者 Jiawei Wu Zhouyang Ma +3 位作者 Lice Yu Shuli Wang Fulin Yang Ligang Feng 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第8期2755-2766,共12页
Advancing and deploying the Fe Ni-based catalyst,the state-of-the-art pre-electrocatalysts,for oxygen evolution reactions(OER)still suffer from unclear chemical state correlation to the catalytic ability,as evidenced ... Advancing and deploying the Fe Ni-based catalyst,the state-of-the-art pre-electrocatalysts,for oxygen evolution reactions(OER)still suffer from unclear chemical state correlation to the catalytic ability,as evidenced by the variedly reported performance for the different Fe Ni structures.Herein,we contributed the phase and redox chemical states tuning of Fe Ni oxides by the surface microenvironment regulation for the OER catalysis that was realized by the urea-assisted pyrolysis and molybdenum-doping technique by integrating molybdenum into the iron–nickel metal-organic precursor.Driven by the complicated and compromised atmosphere,namely,the oxidation state driven by the Mo doping and reduction ability induced by the urea-assisted pyrolysis,could transfer confined Fe Ni oxides to hybrid phases of Fe_(2)O_(3)and FeNi_(3)alloy,and the resultant compromised chemical states by the charge redistribution imparted very high electrocatalytic performance for OER compared with the control samples.The insitu Raman spectroscopy and post-XPS analysis confirmed the facile Fe/Ni oxyhydroxide active phase formation resulting from the proper phase and chemical states,and theoretical analysis disclosed the microenvironment regulation resulting in the charge redistribution forming the electron accumulation and depletion sites to accelerate the oxygen-species to oxyhydroxide-species transformation and enhance the electronic state density near the Fermi level by significantly reducing the energy barrier.The work not only showed the importance of surface chemical state tunning that can basically answer the varied performance of Fe Ni catalysts but also revealed an effective approach for fine-tuning their catalytic properties. 展开更多
关键词 oxygen evolution reaction FeNi-based catalysts urea pyrolysis chemical states charge redistribution
原文传递
An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement 被引量:1
10
作者 陈宏铭 郝跃国 +1 位作者 赵龙 程玉华 《Journal of Semiconductors》 EI CAS CSCD 2013年第9期164-170,共7页
An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measure- ment in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the... An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measure- ment in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the common mode voltage. The threshold inverter quantizer (TIQ)-based CMOS Inverter is used as a comparator in the ADC to avoid static power consumption which is attractive in battery-supply application. Sixteen level-up shifters aim at converting the ultra low core voltage control signals to the higher voltage level analog circuit in a 55 nm CMOS process. The whole ADC power consumption is 2.5 mW with a maximum input capaci- tance of 12 pF in the sampling mode. The active area of the proposed ADC is 0.0462 mm2 and it achieves the SFDR and ENOB of 65.6917 dB and 9.8726 bits respectively with an input frequency of 200 kHz at 1 MS/s sampling rate. 展开更多
关键词 successive approximation register analog-to-digital converter charge redistribution threshold in-verter quantizer
原文传递
A unique Janus PdZn-Co catalyst for enhanced photocatalytic syngas production from CO_(2) and H_(2)O
11
作者 Dongxue Zhou Xiangdong Xue +6 位作者 Qingjie Luan Liguo Zhang Baozhen Li Xing Wang Wenjun Dong Ge Wang Changmin Hou 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期265-268,共4页
The development of excellent catalyst to achieve photocatalytic syngas production from CO_(2) and H_(2)O is a prospective and sustainable strategy to alleviate environment and energy crisis. In this study, a unique Ja... The development of excellent catalyst to achieve photocatalytic syngas production from CO_(2) and H_(2)O is a prospective and sustainable strategy to alleviate environment and energy crisis. In this study, a unique Janus PdZn-Co catalyst is prepared by annealed the Pd/IRMOF-3(Co, Zn) precursor. Due to the strong interaction, the electron transfers from PdZn terminal to Co terminal in the Janus structure. The electron-received Co terminal facilitates Co sites coordinate with the electrophilic C atom of CO_(2) and the electron-donated PdZn center is easier to coordinate with nucleophilic O atoms of H_(2)O or C=O bonds.The charge redistribution enhances the absorption of CO_(2) and H2O, which promotes H_(2) evolution and CO production. In addition, the carbon shell effectively suppresses the metal core agglomeration and facilitates the electron transmission from photosensitizer to metallic active sites. Meanwhile, the ratio of CO/H_(2) can be regulated(~3:1 to 2:1) by adjusting the proportion of Co and PdZn. The Janus structure and graphite carbon synergistically play a profound impact on improving the photocatalytic performance.The optimized PdZn-Co catalyst exhibits a superior photocatalytic CO production rate(20.03 μmol/h) and the H_(2) generation rate(9.90 μmol/h) with a ratio of CO/H_(2)= 2.02. 展开更多
关键词 PdZn@C catalyst Janus structure charge redistribution Absorption modulation PHOTOCATALYST
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部