Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)...Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.展开更多
Exploring feasible synthesis approaches to highly efficient and robust bifunctional electrocatalysts toward both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is triggering researcher’s even-increas...Exploring feasible synthesis approaches to highly efficient and robust bifunctional electrocatalysts toward both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is triggering researcher’s even-increasing interest in rechargeable Zn-air batteries.Herein,sulfur-doped bimetal FeCo phosphide nanoparticles dispersed on N,P,S-tri-doped graphene(donated as S-FeCo3P/NPSG)are rationally prepared through a controllable one-step carbothermal-phosphorization strategy.The modified charge distribution and electron-donor properties of S-FeCo3P/NPSG caused by S decoration render a significantly beneficial effect on the electrocatalytic activities.Consequently,the S-FeCo3P/NPSG electrode exhibits extraordinary bifunctional activities toward oxygen electrochemistry of the OER overpotential of 290 m V at 10 m A cm^(-2) and the ORR half-wave potential of 0.83 V,approaching to that of noblemetal IrO_(2)(289 m V)and Pt/C(0.84 V),respectively,but with more stronger operation stability in alkaline media.When S-FeCo3P/NPSG serves as the air cathode for liquid-state Zn-air battery,the large peak power density and energy density,as well as superb discharge-charge durability(cycling life>600 h)of this device are obtained.Furthermore,all-solid-state Zn-air battery with S-FeCo3P/NPSG as air electrode also displays excellent mechanical flexibility,high power density and stable cycling stability.The self-reconstruction behavior of the S-FeCo3P/NPSG cathode catalysts is also investigated during the electrocatalytic Zn-air battery operation.This work would provide some novel inspiration from aspects of bonding and charge distribution for the rational construction of active and cost-efficient bifucntional oxygen electrocatalysts for energy storage and conversion devices.展开更多
The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The accel...The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.展开更多
Modulating surface charge redistribution based on interface and defect engineering has been considered as a resultful means to boost electrocatalytic activity.However,the mechanism of synergistic regulation of heteroj...Modulating surface charge redistribution based on interface and defect engineering has been considered as a resultful means to boost electrocatalytic activity.However,the mechanism of synergistic regulation of heterojunction and vacancy defects remains unclear.Herein,a Vs-CoP-CoS_(2)/C n-n heterojunction with sulfur vacancies is successfully constructed,which manifests superior electrocatalytic activity for oxygen evolution,as demonstrated by a low overpotential of 170 mV to reach 10 mA/cm^(2).The experimental results and density functional theory calculations testify that the outstanding OER performance of Vs-CoP-CoS_(2)/C heterojunction is owed to the synergistic effect of sulfur vacancies and built-in electric field at n-n heterogeneous interface,which accelerates the electron transfer,induces the charge redistribution,and regulates the adsorption energy of active intermediates during the reaction.This study affords a promising means to regulate the electrocatalytic performance by the construction of heterogeneous interfaces and defects,and in-depth explores the synergistic mechanisms of n-n heterojunction and vacancies.展开更多
Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underly...Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters--and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics--namely gas heating and electric field reversals.展开更多
Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,bu...Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction.展开更多
A prepaid subscriber is allowed to simultaneously implement multiple services in online charging mechanism of IP Multimedia Subsystem (IMS). It is a noteworthy discussion to effectively distribute the limited account ...A prepaid subscriber is allowed to simultaneously implement multiple services in online charging mechanism of IP Multimedia Subsystem (IMS). It is a noteworthy discussion to effectively distribute the limited account resources among concurrent services. An account-sharing algorithm is proposed for multi-services,which introduces resource reclamation and redistribution processes based on the resource reservation of standard specifications and dynamically adjusts them according to the changes of Quality of Service (QoS). Three performance indexes are investigated in the simulation experiments, which are average number of accommodated sessions, average number of completed ses- sions, and average number of iterations per accommodated session. The results show that in the normal QoS level, the three indexes of the proposed algorithm averagely increase by 18.7%, 5.4%, and 3.1% compared with the Prepaid Credit Distribution (PCD) algorithm, and by 2.1%, 1.0%, and 1.8% compared with the Prepaid Credit Reclaim (PCR) algorithm. In the poor QoS level, the performance advantages are greater, which averagely increase by 29.1%, 7.1%, and 2.8% compared with PCD, and by 9.4%, 4.1%, and 3.6% compared with PCR.展开更多
Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great cha...Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great challenge in both the preparation and catalytic mechanism.Herein,we proposed a novel and efficient Ar-plasma(P)-assisted strategy to construct heteroatom Mo-substituted and oxygen vacancies enriched hierarchical spinel Co_(3)O_(4)porous nanoneedle arrays in situ grown on carbon cloth(denoted P-Mo-Co_(3)O_(4)@CC)to improve the OER performance.Ar-plasma technology can efficiently generate vacancy sites at the surface of hydroxide,which induces the anchoring of Mo anion salts through electrostatic interaction,finally facilitating the substitution of Mo atoms and the formation of oxygen vacancies on the Co_(3)O_(4)surface.The P-Mo-Co_(3)O_(4)@CC affords a low overpotential of only 276 mV at 10 mA cm^(−2)for the OER,which is 58 mV superior to that of Mo-free Co_(3)O_(4)@CC and surpasses commercial RuO_(2)catalyst.The robust stability and satisfactory selectivity(nearly 100%Faradic efficiency)of P-Mo-Co_(3)O_(4)@CC for the OER are also demonstrated.Theoreti-cal studies demonstrate that Mo with variable valance states can efficiently regulates the atomic ratio of Co^(3+)/Co^(2+)and increases the number of oxygen vacancies,thereby inducing charge redistribution and tuning the d-band center of Co_(3)O_(4),which improve the adsorption energy of oxygen intermediates(e.g.,*OOH)on P-Mo-Co_(3)O_(4)@CC during OER.Furthermore,the two-electrode OER//HER electrolyzer equipped with P-Mo-Co_(3)O_(4)@CC as anode displays a low operation potential of 1.54 V to deliver a current density of 10 mA cm^(−2),and also exhibits good reversibility and anticurrent fluctuation ability under simulated real energy supply conditions,demonstrating the great potential of P-Mo-Co_(3)O_(4)@CC in water electrolysis.展开更多
作为大规模储能系统的重要组成,混合型超级电容器的荷电状态(state of charge,SOC)估计是能量管理系统必不可少的部分。该文提出一种基于动态容值修正的超级电容器SOC预估方法。首先,利用参数辨识方法求解超级电容器实时电动势,定义不...作为大规模储能系统的重要组成,混合型超级电容器的荷电状态(state of charge,SOC)估计是能量管理系统必不可少的部分。该文提出一种基于动态容值修正的超级电容器SOC预估方法。首先,利用参数辨识方法求解超级电容器实时电动势,定义不同初始电压放电至相同终止电压的容值为动态容值。其次,设计不同温度、不同电流倍率的实验得到超级电容器不同工况下特性。再次,建立基于动态容值修正的全工况预测模型,修正电动势归一化和电荷再分配现象导致的SOC估计的误差。最后,通过多个温度下的随机变电流放电实验数据,将基于动态容值修正的SOC估计值和电流Ah积分法得到的SOC参考值进行对比,证明该SOC估计方法的准确性。展开更多
Independent atom model (IAM) is generaly used in gaseous electron diffraction (GED) experiment. This means that the effect of the charge redistribution in a molecule is neglected in general case in GED data analysis a...Independent atom model (IAM) is generaly used in gaseous electron diffraction (GED) experiment. This means that the effect of the charge redistribution in a molecule is neglected in general case in GED data analysis and the information of the effect could be taken from the residual intensity.In this work, various methods were suggested to calculate the elastic scattering factors for S, F atoms in SF6 molecule (modified IAM or MIAM) and the residual intensity of 40keV electrons scattered by the same molecule. Bonham-type parameter method was selected to acheive good agreement with experimental results and the charge redistribution was determined according to these parameters. Further comparison was made between different methods and their results.展开更多
基金financially supported by the National Natural Science Foundation of China (52363028)the Natural Science Foundation of Guangxi Province (2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject (GUIKE AD23023004,GUIKE AD20297039)
文摘Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.
基金supported by the National Natural Science Foundation of China(21875118,22179065,and 22105108)the Natural Science Foundation of Tianjin(19JCZDJC37700)+1 种基金the 111 project(B12015)China Postdoctoral Science Foundation(2020M680860)。
文摘Exploring feasible synthesis approaches to highly efficient and robust bifunctional electrocatalysts toward both oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)is triggering researcher’s even-increasing interest in rechargeable Zn-air batteries.Herein,sulfur-doped bimetal FeCo phosphide nanoparticles dispersed on N,P,S-tri-doped graphene(donated as S-FeCo3P/NPSG)are rationally prepared through a controllable one-step carbothermal-phosphorization strategy.The modified charge distribution and electron-donor properties of S-FeCo3P/NPSG caused by S decoration render a significantly beneficial effect on the electrocatalytic activities.Consequently,the S-FeCo3P/NPSG electrode exhibits extraordinary bifunctional activities toward oxygen electrochemistry of the OER overpotential of 290 m V at 10 m A cm^(-2) and the ORR half-wave potential of 0.83 V,approaching to that of noblemetal IrO_(2)(289 m V)and Pt/C(0.84 V),respectively,but with more stronger operation stability in alkaline media.When S-FeCo3P/NPSG serves as the air cathode for liquid-state Zn-air battery,the large peak power density and energy density,as well as superb discharge-charge durability(cycling life>600 h)of this device are obtained.Furthermore,all-solid-state Zn-air battery with S-FeCo3P/NPSG as air electrode also displays excellent mechanical flexibility,high power density and stable cycling stability.The self-reconstruction behavior of the S-FeCo3P/NPSG cathode catalysts is also investigated during the electrocatalytic Zn-air battery operation.This work would provide some novel inspiration from aspects of bonding and charge distribution for the rational construction of active and cost-efficient bifucntional oxygen electrocatalysts for energy storage and conversion devices.
基金supported by National Natural Science Foundation of China(Nos.51275029,51102007 and 11275007)
文摘The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.22269015,U22A20107,22205119)Natural Science Foundation of Inner Mongolia Autonomous Region of China(Nos.2021ZD11,2019BS02015).
文摘Modulating surface charge redistribution based on interface and defect engineering has been considered as a resultful means to boost electrocatalytic activity.However,the mechanism of synergistic regulation of heterojunction and vacancy defects remains unclear.Herein,a Vs-CoP-CoS_(2)/C n-n heterojunction with sulfur vacancies is successfully constructed,which manifests superior electrocatalytic activity for oxygen evolution,as demonstrated by a low overpotential of 170 mV to reach 10 mA/cm^(2).The experimental results and density functional theory calculations testify that the outstanding OER performance of Vs-CoP-CoS_(2)/C heterojunction is owed to the synergistic effect of sulfur vacancies and built-in electric field at n-n heterogeneous interface,which accelerates the electron transfer,induces the charge redistribution,and regulates the adsorption energy of active intermediates during the reaction.This study affords a promising means to regulate the electrocatalytic performance by the construction of heterogeneous interfaces and defects,and in-depth explores the synergistic mechanisms of n-n heterojunction and vacancies.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)-Discovery Grant(No.342369)
文摘Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters--and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics--namely gas heating and electric field reversals.
基金National Natural Science Foundation of China,Grant/Award Number:22102079Taishan Scholar Program of Shandong Province,China,Grant/Award Number:tsqn202211162Natural Science Foundation of Shandong Province of China,Grant/Award Numbers:ZR2021YQ10,ZR2022QB163。
文摘Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction.
基金Supported by the National Natural Science Fund for Distinguished Young Scholars (No.60525110)the National 973 Program (No.2007CB307100, No.2007CB 307103)the Development Fund Project for Elec-tronic and Information Industry (Mobile Service and Application System Based on 3G)
文摘A prepaid subscriber is allowed to simultaneously implement multiple services in online charging mechanism of IP Multimedia Subsystem (IMS). It is a noteworthy discussion to effectively distribute the limited account resources among concurrent services. An account-sharing algorithm is proposed for multi-services,which introduces resource reclamation and redistribution processes based on the resource reservation of standard specifications and dynamically adjusts them according to the changes of Quality of Service (QoS). Three performance indexes are investigated in the simulation experiments, which are average number of accommodated sessions, average number of completed ses- sions, and average number of iterations per accommodated session. The results show that in the normal QoS level, the three indexes of the proposed algorithm averagely increase by 18.7%, 5.4%, and 3.1% compared with the Prepaid Credit Distribution (PCD) algorithm, and by 2.1%, 1.0%, and 1.8% compared with the Prepaid Credit Reclaim (PCR) algorithm. In the poor QoS level, the performance advantages are greater, which averagely increase by 29.1%, 7.1%, and 2.8% compared with PCD, and by 9.4%, 4.1%, and 3.6% compared with PCR.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875112,22109073Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20221321。
文摘Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction(OER)through charge redistribution and d-band center modification but still remain a great challenge in both the preparation and catalytic mechanism.Herein,we proposed a novel and efficient Ar-plasma(P)-assisted strategy to construct heteroatom Mo-substituted and oxygen vacancies enriched hierarchical spinel Co_(3)O_(4)porous nanoneedle arrays in situ grown on carbon cloth(denoted P-Mo-Co_(3)O_(4)@CC)to improve the OER performance.Ar-plasma technology can efficiently generate vacancy sites at the surface of hydroxide,which induces the anchoring of Mo anion salts through electrostatic interaction,finally facilitating the substitution of Mo atoms and the formation of oxygen vacancies on the Co_(3)O_(4)surface.The P-Mo-Co_(3)O_(4)@CC affords a low overpotential of only 276 mV at 10 mA cm^(−2)for the OER,which is 58 mV superior to that of Mo-free Co_(3)O_(4)@CC and surpasses commercial RuO_(2)catalyst.The robust stability and satisfactory selectivity(nearly 100%Faradic efficiency)of P-Mo-Co_(3)O_(4)@CC for the OER are also demonstrated.Theoreti-cal studies demonstrate that Mo with variable valance states can efficiently regulates the atomic ratio of Co^(3+)/Co^(2+)and increases the number of oxygen vacancies,thereby inducing charge redistribution and tuning the d-band center of Co_(3)O_(4),which improve the adsorption energy of oxygen intermediates(e.g.,*OOH)on P-Mo-Co_(3)O_(4)@CC during OER.Furthermore,the two-electrode OER//HER electrolyzer equipped with P-Mo-Co_(3)O_(4)@CC as anode displays a low operation potential of 1.54 V to deliver a current density of 10 mA cm^(−2),and also exhibits good reversibility and anticurrent fluctuation ability under simulated real energy supply conditions,demonstrating the great potential of P-Mo-Co_(3)O_(4)@CC in water electrolysis.
文摘作为大规模储能系统的重要组成,混合型超级电容器的荷电状态(state of charge,SOC)估计是能量管理系统必不可少的部分。该文提出一种基于动态容值修正的超级电容器SOC预估方法。首先,利用参数辨识方法求解超级电容器实时电动势,定义不同初始电压放电至相同终止电压的容值为动态容值。其次,设计不同温度、不同电流倍率的实验得到超级电容器不同工况下特性。再次,建立基于动态容值修正的全工况预测模型,修正电动势归一化和电荷再分配现象导致的SOC估计的误差。最后,通过多个温度下的随机变电流放电实验数据,将基于动态容值修正的SOC估计值和电流Ah积分法得到的SOC参考值进行对比,证明该SOC估计方法的准确性。
文摘Independent atom model (IAM) is generaly used in gaseous electron diffraction (GED) experiment. This means that the effect of the charge redistribution in a molecule is neglected in general case in GED data analysis and the information of the effect could be taken from the residual intensity.In this work, various methods were suggested to calculate the elastic scattering factors for S, F atoms in SF6 molecule (modified IAM or MIAM) and the residual intensity of 40keV electrons scattered by the same molecule. Bonham-type parameter method was selected to acheive good agreement with experimental results and the charge redistribution was determined according to these parameters. Further comparison was made between different methods and their results.