期刊文献+
共找到877篇文章
< 1 2 44 >
每页显示 20 50 100
Zinc–Bromine Rechargeable Batteries:From Device Configuration,Electrochemistry,Material to Performance Evaluation 被引量:1
1
作者 Norah S.Alghamdi Masud Rana +6 位作者 Xiyue Peng Yongxin Huang Jaeho Lee Jingwei Hou Ian R.Gentle Lianzhou Wang Bin Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期349-384,共36页
Zinc–bromine rechargeable batteries(ZBRBs)are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost,deep discharge capability,non-flammable electrolytes,r... Zinc–bromine rechargeable batteries(ZBRBs)are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost,deep discharge capability,non-flammable electrolytes,relatively long lifetime and good reversibility.However,many opportunities remain to improve the efficiency and stability of these batteries for long-life operation.Here,we discuss the device configurations,working mechanisms and performance evaluation of ZBRBs.Both non-flow(static)and flow-type cells are highlighted in detail in this review.The fundamental electrochemical aspects,including the key challenges and promising solutions,are discussed,with particular attention paid to zinc and bromine half-cells,as their performance plays a critical role in determining the electrochemical performance of the battery system.The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques.The review concludes with insights into future developments and prospects for high-performance ZBRBs. 展开更多
关键词 Zinc–bromine rechargeable batteries Cell configurations Electrochemical property performance metrics Assessment methods
下载PDF
Improving the electrical performances of InSe transistors by interface engineering
2
作者 曹天俊 郝松 +5 位作者 吴晨晨 潘晨 戴玉頔 程斌 梁世军 缪峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期153-158,共6页
InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hinder... InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications. 展开更多
关键词 two-dimensional materials INSE van der Waals heterostructure electrical performances charge density difference
下载PDF
A comparative study for the impact performance of shaped charge JET on UHPC targets 被引量:6
3
作者 Hao Wu Feng Hu Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期506-518,共13页
With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance c... With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures. 展开更多
关键词 Shaped charge JET Ultra-high performance concrete PENETRATION PERFORATION Numerical simulation
下载PDF
Nanohollow Carbon for Rechargeable Batteries:Ongoing Progresses and Challenges 被引量:4
4
作者 Jiangmin Jiang Guangdi Nie +6 位作者 Ping Nie Zhiwei Li Zhenghui Pan Zongkui Kou Hui Dou Xiaogang Zhang John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期362-391,共30页
Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of recha... Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of rechargeable batteries,owing to their high surface areas in association with the high surface-to-volume ratios,controllable pores and pore size distribution,high electrical conductivity,and excellent chemical and mechanical stability,which are beneficial for providing active sites,accelerating electrons/ions transfer,interacting with electrolytes,and giving rise to high specific capacity,rate capability,cycling ability,and overall electrochemical performance.In this overview,we look into the ongoing progresses that are being made with the nanohollow carbon materials,including nanospheres,nanopolyhedrons,and nanofibers,in relation to their applications in the main types of rechargeable batteries.The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries,including lithium-ion batteries,sodium-ion batteries,potassium-ion batteries,and lithium–sulfur batteries are comprehensively reviewed and discussed,together with the challenges being faced and perspectives for them. 展开更多
关键词 Hollow carbon nanospheres Nanopolyhedrons and nanofibers Template synthesis rechargeable batteries Electrochemical performance
下载PDF
Photo-assisted Rechargeable Metal Batteries for Energy Conversion and Storage 被引量:2
5
作者 Nanfu Yan Xueping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期439-451,共13页
Solar cells hold a function of photovoltaic conversion,while rechargeable metal batteries have an advantage of high energy storage.The conventional charge mode of batteries is made based on complete utilization of ele... Solar cells hold a function of photovoltaic conversion,while rechargeable metal batteries have an advantage of high energy storage.The conventional charge mode of batteries is made based on complete utilization of electric energy.The combination of solar cells and rechargeable metal batteries brings a new opportunity for the development of photo-assisted rechargeable batteries,in which the solar energy can be utilized to partially achieve photo-charging with or without external electrical bias.This review highlights the working mechanism and structure design of photo-assisted rechargeable metal batteries according to the characteristics of rechargeable metal batteries and advantage of the photovoltaic technology.In particular,the recent advances are introduced for photo-assisted rechargeable batteries based on light-weight metal anodes,including metal lithium,metal sodium,and metal zinc.The working features of the integrated devices are also discussed for energy saving under photo-assisted charging mode.Finally,a future outlook is provided for further improving the performance of photoassisted rechargeable metal batteries. 展开更多
关键词 metal anodes photo-assisted charge rechargeable batteries solar cells
下载PDF
Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor
6
作者 Sedighe Salimian Mohammad Esmaeil Azim Araghi 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期113-117,共5页
The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate ... The temperature-dependent effect of residual charge carrier (no), at the Dirac point, on mobility is studied. We fabricate and characterize a graphene field effect transistor (GFET) using 7nm TiO2 as the top-gate dielectric. The temperature-dependent gate voltage-drain current and room temperature gate capacitance are measured to extract the carrier mobility and to estimate the quantum capacitance of the GFET. The device shows the mobility value of gOO cm^2 /V.s at room temperature and it decreases to 45 cm^2 /V.s for 20 K due to the increase of n0. These results indicate that the phonon scattering is not the dominant process for the unevenness dielectric layer while the coulomb scattering by charged impurities degrades the device characteristically at low temperature. 展开更多
关键词 of it by Effect of Residual charge Carrier on the performance of a Graphene Field Effect Transistor on IS VTG HIGH for into that
下载PDF
Analysis on damage characteristics and detonation performance of solid rocket engine charge subjected to jet
7
作者 Song-lin Pang Xiong Chen +2 位作者 Jin-sheng Xu Ge-tu Zhaori Hong-Ying Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1552-1562,共11页
To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine(SRE) in storage or transportation, protective armor was designed and the shelled charges model(SCM)/SRE... To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine(SRE) in storage or transportation, protective armor was designed and the shelled charges model(SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed.By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168-1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor(WFRCA). 展开更多
关键词 Explosion mechanics Shaped charge jet Damage characteristics Detonation performance of propellant
下载PDF
Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory
8
作者 刘利芳 潘立阳 +1 位作者 张志刚 许军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期189-192,共4页
Impact of band-engineering to the performance of charge trapping memory with HfO2/Ta2O5/HfO2 (HTH) as the charge trapping layer is investigated. Compared with devices with the same total HfO2 thickness, structures w... Impact of band-engineering to the performance of charge trapping memory with HfO2/Ta2O5/HfO2 (HTH) as the charge trapping layer is investigated. Compared with devices with the same total HfO2 thickness, structures with Ta2O5 closer to substrates show larger program/erase window, because the 2nd HfO2 (next to blocking oxide) serving as part of blocking oxide reduces the current tunneling out of/in the charge trapping layer during program and erase. Moreover, trapped charge centroid is modulated and contributed more to the fiat-band voltage shift. Further experiments prove that devices with a thicker 2nd HfO2 layer exhibit larger saturate fiat-band shift in both program and erase operation. The optimized device achieves a 7 V memory window and good reliability characteristics. 展开更多
关键词 Impact of Band-Engineering to performance of High-k Multilayer Based charge Trapping Memory HTH CTL Ta
下载PDF
A novel Zn-PANI dry rechargeable battery
9
作者 WANG Xinsheng JIN Xin GU Dawei SHEN Linjiang 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期67-70,共4页
Conducting polyaniline (PANI) powder was well mixed with graphite and acetylene black to obtain the optimum conductivity and porosity. The mixed powder was compressed into a pellet for cathode. Zinc powder was mixed w... Conducting polyaniline (PANI) powder was well mixed with graphite and acetylene black to obtain the optimum conductivity and porosity. The mixed powder was compressed into a pellet for cathode. Zinc powder was mixed with some metal powder, and compressed into a pellet used as the anode. The electrolyte comprised ZnCl2, NH4Cl, Triton-X100 and PVA at pH 3. The battery has an open-circuit voltage of 1.44 V. The battery underwent charge-discharge cycle with a constant current density of 3 mA·cm-2, within the voltage range of 0.40-1.68 V. It is found that the capacity of the battery is related to the charge-discharge cycles, the maximum capacity is 67.9 mAh·g-1, and Coulombic efficiency is between 95% and 100%. The battery stability was also investigated after 78 d of standing without use. It is found that the battery experiences a self-discharge of less than 0.29% per day. 展开更多
关键词 POLYANILINE rechargeable battery capacity charge-discharge cycle
下载PDF
Speed-Grading Mobile Charging Policy in Large-Scale Wireless Rechargeable Sensor Networks
10
作者 Xianhao Shen Hangyu Xu Kangyong Liu 《国际计算机前沿大会会议论文集》 2019年第1期278-280,共3页
As the technological breakthrough is made in wireless charging, the wireless rechargeable sensor networks (WRSNs) are finally proposed. In order to reduce the charging completion time, most existing works use the “mo... As the technological breakthrough is made in wireless charging, the wireless rechargeable sensor networks (WRSNs) are finally proposed. In order to reduce the charging completion time, most existing works use the “mobilethen- charge” model—the Wireless charging vehicles (WCV) moves to the charging spot first and then charges nodes nearby. These works often aim to reduce the node’s movement delay or charging delay. However, the charging opportunities during the movement are overlooked in this model because WCV can charge nodes when it goes from one spot to the next. In order to use the charging opportunities, a speed grading method is proposed under the circumstance of variable WCV speed, which transformed the problem of final charging delay into a traveling salesman problem with speed grading. The problem was further solved by linear programming method. The simulation experiments show that, compared with the existing charging methods, the proposed method has a significant improvement in charging delay. 展开更多
关键词 WIRELESS rechargeABLE sensor networks WIRELESS chargING Speed GRADING chargING delay
下载PDF
Collaborative Charging Scheduling in Wireless Charging Sensor Networks
11
作者 Qiuyang Wang Zhen Xu Lei Yang 《Computers, Materials & Continua》 SCIE EI 2024年第4期1613-1630,共18页
Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, w... Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios. 展开更多
关键词 Wireless rechargeable sensor network mobile charger collaborative charging adaptive charging
下载PDF
Designing an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment
12
作者 Md. Robiul Islam Maisha Islam +2 位作者 Tania Sarkar Hanif Mia Md. Asadullah 《Journal of Power and Energy Engineering》 2024年第1期15-28,共14页
This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technolog... This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technology has rapidly advanced in the last few years. At kilowatt power levels, the transmission distance grows from a few millimeters to several hundred millimeters with a grid to load efficiency greater than 90%. The improvements have made the WPT more appealing for electric vehicle (EV) charging applications in both static and dynamic charging scenarios. Static and dynamic WEVCS, two of the main applications, are described, and current developments with features from research facilities, academic institutions, and businesses are noted. Additionally, forthcoming concepts based WEVCS are analyzed and examined, including “dynamic” wireless charging systems (WCS). A dynamic wireless power transfer (DWPT) system, which can supply electricity to moving EVs, is one of the feasible alternatives. The moving secondary coil is part of the dynamic WPT system, which also comprises of many fixed groundside (primary) coils. An equivalent circuit between the stationary system and the dynamic WPT system that results from the stationary system is demonstrated by theoretical investigations. The dynamic WPT system’s solenoid coils outperform circular coils in terms of flux distribution and misalignment. The WPT-related EV wireless charging technologies were examined in this study. WPT can assist EVs in overcoming their restrictions on cost, range, and charging time. 展开更多
关键词 Dynamic Wireless Power Transfer (DWPT) Wireless charging System (WCS) Electric Vehicle (EV) Dynamic performance
下载PDF
Numerical Analysis on Charging Performance of the Macro-Encapsulating Combined Sensible-Latent Heat Storage System with Structural Parameters
13
作者 WANG Wei PAN Zhenfei +2 位作者 WANG Jingfu WU Yuting MA Chongfang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期1026-1036,共11页
For combined sensible-latent heat storage system(CSLHS)(termed as the hybrid configuration),macro encapsulation can effectively solve the leakage problem of PCMs.However,due to the poor thermal conductivity of PCMs,th... For combined sensible-latent heat storage system(CSLHS)(termed as the hybrid configuration),macro encapsulation can effectively solve the leakage problem of PCMs.However,due to the poor thermal conductivity of PCMs,the charging performance of the hybrid configuration slightly increases compared to the solid structure(with only sensible materials).Meanwhile,the natural convection in the PCMs zone could improve the charging performance.So,how to improve natural convection intensity is a key issue for the CSLHS by macro encapsulating.It is found that adding fins can significantly enhance natural convection and accelerate the melting of PCM.In this paper,we proposed the hybrid configuration with fins built-in by macro encapsulation,and analyzed its charging performance with different fin structural parameters in the PCM zone by CFD simulation.In the case,the sensible heat storage material is high-temperature concrete and the PCM is a low-melting-point mixed molten salt.We analyzed the effects of fin number,fin length and fin thickness on the charging performance of the hybrid configuration respectively.From the result,the charging performance increases with the fin number,but the increase rate gradually decreases.When the fin number is 6,the charging performance increases by 20.18%compared to the situation without fin.The charging performance increases gradually with the fin length.Compared with the hybrid configuration without fin,for each 10 mm increase in fin length,its charging performances increase by 4.09%,5.26%,7.02%,8.77%,11.70%,and 15.79%,respectively.Different from number and length of fins,the effect of thickness on the charging performance is very small.When the fin thickness increased from 1 mm to 4 mm,the charging performance only increased by 2.3%.It indicates that the main reason for the improving the charging performance is to increase the natural convection intensity by dividing the PCM zone through fins.These results show that the charging performance of the CSLHS with macro encapsulation can be improved by optimizing fin structural parameters. 展开更多
关键词 macro-encapsulation hybrid configuration natural convection structural parameter charging performance
原文传递
Effect of wave shaper on reactive materials jet formation and its penetration performance 被引量:6
14
作者 Huan-guo Guo Yuan-feng Zheng +3 位作者 Le Tang Qing-bo Yu Chao Ge Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期495-505,共11页
Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge(RLSC)are investigated by experiments and simulations.The reactive materials liner with a density of2.3 g/cm^3 is fab... Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge(RLSC)are investigated by experiments and simulations.The reactive materials liner with a density of2.3 g/cm^3 is fabricated by cold pressing at a pressure of 300 MPa and sintering at a temperature of 380℃.Experiments of the RLSC with and without wave shaper against steel plates are carried out at standoffs of0.5,1.0,and 1.5 CD(charge diameter),respectively.The experimental results show that the penetration depths and structural damage effects of steel plates decrease with increasing the standoff,while the penetration depths and the damage effects of RLSC without wave shaper are much greater than that with wave shaper at the same standoff.To understand the unusual experimental results,numerical simulations based on AUTODYN-2 D code are conducted to discuss the wave shaper effect,including the propagation behavior of detonation wave,the velocity and temperature distribution of reactive jet,and penetration depth of reactive jet.The simulations indicate that,compared with RLSC without wave shaper,there is a higher temperature produced inside reactive jet with wave shaper.This unusual temperature rise effects are likely to be an important mechanism to cause the initiation delay time of reactive jet to decline,which results in significantly decreasing its penetration performance. 展开更多
关键词 Shaped charge REACTIVE materials LINER Wave SHAPER REACTIVE JET PENETRATION performance
下载PDF
Cosensitization process effect of D-A-π-A featured dyes on photovoltaic performances 被引量:1
15
作者 Bo Liu Qipeng Chai +3 位作者 Weiwei Zhang Wenjun Wu He Tian Wei-Hong Zhu 《Green Energy & Environment》 SCIE 2016年第1期84-90,共7页
Cosensitization based on two or multiple dyes as "dye cocktails" can hit the target on compensating and broadening light-harvesting region.Two indoline D-A-π-A motif sensitizers(WS-2 and WS-39) that possess... Cosensitization based on two or multiple dyes as "dye cocktails" can hit the target on compensating and broadening light-harvesting region.Two indoline D-A-π-A motif sensitizers(WS-2 and WS-39) that possess similar light response area but distinctly reversed feature in photovoltaic performance are selected as the specific cosensitization couple. That is, WS-2 shows quite high photocurrent but low photovoltage, and WS-39 gives relatively low photocurrent but quite high photo voltage. Due to the obvious "barrel effect",both dyes show medium PCE around8.50%. In contrast with the previous cosensitization strategy mostly focused on the compensation of light response region, herein we perform different cosensitization sequence, for taking insight into the balance of photocurrent and photo voltage, and achieving the synergistic improvement in power conversion efficiency(PCE). Electronic impedance spectra(EIS) indicate that exploiting dye WS-39 with high V_(OC) value as the primary sensitizer can repress the charge recombination more effectively, resulting in superior V_(OC) rather than using dye WS-2 with high J_(SC)as the primary sensitizer. As a consequence, a high PCE value of 9.48% is obtained with the delicate cosensitization using WS-39 as primary dye and WS-2 as accessory dye, which is higher than the corresponding devices sensitized by each individual dye(around 8.48-8.67%). It provides an effective optimizing strategy of cosensitization how to combine the individual dye advantages for developing highly efficient solar cells. 展开更多
关键词 Indoline dye Cosensitization Adsorption sequence charge recombination Photovoltaic performances
下载PDF
Time-Temperature Charge Function of a High Dynamic Thermal Heat Storage with Phase Change Material 被引量:1
16
作者 Johannes Goeke Andreas Henne 《Energy and Power Engineering》 2015年第2期41-54,共14页
A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorb... A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorbing solar heat, heat from co-generation and heat pumps or electric heat from excess wind and solar power. The storage system is equipped with a plate heat exchanger that is so powerful that even with small temperature differences between the flow temperature and the storage temperature a high load dynamic is achieved. The storage system has a performance of 2.8 kW at 4 K and 10.6 kW at a temperature difference of 10 K. Thus, large performance variations in solar thermal systems or CHP plants can be buffered very well. Further a storage charge function Q(T, t) will be presented to characterize the performance of the storage. 展开更多
关键词 THERMAL STORAGE Phase Change Material (PCM) Plate Heat EXCHANGER Dynamic performance STORAGE charge FUNCTION
下载PDF
Confining Li_(2)O_(2) in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials for Li-O_(2) batteries
17
作者 Yin Zhou Yong Zhao +3 位作者 Zhenjie Liu Zhangquan Peng Li Wang Wei Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期55-61,共7页
Achieving low charge overpotentials represents one of the most critical challenges for pursuing highperformance lithium-oxygen(Li-O_(2))batteries.Herein,we propose a strategy to realize low charge overpotentials by co... Achieving low charge overpotentials represents one of the most critical challenges for pursuing highperformance lithium-oxygen(Li-O_(2))batteries.Herein,we propose a strategy to realize low charge overpotentials by confining the growth of lithium peroxide(Li_(2)O_(2))inside mesoporous channels of cathodes(CMK-8).The CMK-8 cathode with tortuous pore structures can extend the diffusion distance of lithium superoxide(LiO_(2))in the mesoporous channels,facilitating the further reduction of LiO_(2) to lithium peroxide(Li_(2)O_(2))inside the pores and preventing them to be diffused out of the pores.Therefore,Li_(2)O_(2) is trapped in the mesoporous channels of CMK-8 cathodes,ensuring a good Li_(2)O_(2)/CMK-8 contact interface.The CMK-8 electrode exhibits a low charge overpotential of 0.43 V and a good cycle life for 72 cycles with a fixed capacity of 500 m Ah g^(-1) at 0.1 A g^(-1).This study proposes a strategy to achieve a low charge overpotential by confining Li_(2)O_(2) growth in the mesoporous channels of cathodes. 展开更多
关键词 Lithium-oxygen CMK-8 cathode charge overpotential Lithium superoxide Cycle performance
下载PDF
Ultrafine RuO_(2) nanoparticles/MWCNTs cathodes for rechargeable Na-CO_(2) batteries with accelerated kinetics of Na_(2)CO_(3) decomposition
18
作者 Zhenzhen Wang Yichao Cai +7 位作者 Youxuan Ni Yong Lu Liu Lin Haoxiang Sun Haixia Li Zhenhua Yan Qing Zhao Jun Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期531-535,共5页
Na-CO_(2) batteries have attracted extensive attention due to their high theoretical energy density(1125 Wh/kg),efficient utilization of CO_(2),and abundant sodium resources.However,they are trapped by the sluggish de... Na-CO_(2) batteries have attracted extensive attention due to their high theoretical energy density(1125 Wh/kg),efficient utilization of CO_(2),and abundant sodium resources.However,they are trapped by the sluggish decomposition kinetic of discharge products (mainly Na_(2)CO_(3)) on cathode side during the charging process.Here we prepared a series of nano-composites composed of RuO_(2) nanoparticles in situ loaded on activated multi-walled carbon nanotubes (RuO_(2)@a-MWCNTs) through hydrolyzing reaction followed by calcination method and used them as cathode catalysts to accelerate the decomposition of Na_(2)CO_(3).Among all catalysts,the RuO_(2)@a-MWCNTs with appropriate ratio of RuO_(2)(49.7 wt%) demonstrated best stability and rate performance in Na-CO_(2) batteries,benefiting from both high specific surface area (160.3 m^(2)/g) and highly dispersed RuO_(2) with ultrafine nanostructures (~2 nm).At a limited capacity of 500 mAh/g,Na-CO_(2) batteries could afford the operation of over 120 cycles at 100 mA/g,and even at the current density to 500 mA/g,the charge voltage was still lower than 4.0 V after 40 cycles.Further theoretical calculations proved that RuO_(2) was the catalytically active center and contributed to the decomposition of Na_(2)CO_(3) by weakening the C=O bond.The synergetic functions of high specific surface(CNTs) and high catalytic activity (RuO_(2)) will inspire more progress on metal-CO_(2) batteries. 展开更多
关键词 Na-CO_(2)batteries Cathode catalyst RuO_(2)@a-MWCNTs High rate performance Low charge overpotential
原文传递
Performance Analysis of Plug-in Hybrid Passenger Vehicles
19
作者 Harald Kraus Martin Ackerl Paul Karoshi Jurgen Fabian Amo Eichberger 《Journal of Energy and Power Engineering》 2014年第9期1599-1606,共8页
关键词 混合动力客车 性能分析 插入式 混合动力车 混合动力电动车 车辆模型 操作策略 道路坡度
下载PDF
新能源汽车储能系统快速充电策略研究综述
20
作者 金英爱 余文宾 马纯强 《电气工程学报》 CSCD 北大核心 2024年第1期23-32,共10页
电动汽车在近十年得到大力发展与推广,但续航里程一直限制着电动汽车的进一步发展。车载储能系统快速充电技术能够有效缓解现阶段电动汽车用户续航里程焦虑,同时提高车辆安全性。电动汽车快速充电技术包括基于经验的充电策略和基于优化... 电动汽车在近十年得到大力发展与推广,但续航里程一直限制着电动汽车的进一步发展。车载储能系统快速充电技术能够有效缓解现阶段电动汽车用户续航里程焦虑,同时提高车辆安全性。电动汽车快速充电技术包括基于经验的充电策略和基于优化的充电策略。本文首先总结了各种传统充电方法的优点和缺点,其次根据应用场景优化目标的不同,归纳了不同优化目标的快充策略的应用,此外总结了电池内部的电极材料、电解质和电极/电解质界面(EEI)对快充性能的影响,并归纳了不同材料的改良措施,并对该领域未来发展方向进行了展望。 展开更多
关键词 电动汽车 充电策略 锂电池 电极材料 快充性能
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部